Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_3_a1, author = {A. G. Korotkov and T. A. Levanova}, title = {On born of in-phase limit cycle in ensemble of excitatory coupled {FitzHugh-Nagumo} elements}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {273--281}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a1/} }
TY - JOUR AU - A. G. Korotkov AU - T. A. Levanova TI - On born of in-phase limit cycle in ensemble of excitatory coupled FitzHugh-Nagumo elements JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 273 EP - 281 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a1/ LA - ru ID - SVMO_2018_20_3_a1 ER -
%0 Journal Article %A A. G. Korotkov %A T. A. Levanova %T On born of in-phase limit cycle in ensemble of excitatory coupled FitzHugh-Nagumo elements %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 273-281 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a1/ %G ru %F SVMO_2018_20_3_a1
A. G. Korotkov; T. A. Levanova. On born of in-phase limit cycle in ensemble of excitatory coupled FitzHugh-Nagumo elements. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 3, pp. 273-281. http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a1/
[1] C. Koch, Biophysics of computation: information processing in single neurons, Oxford University Press, 2004
[2] E. De Schutter, ed., Computational neuroscience: realistic modeling for experimentalists, CRC Press, 2000 | MR
[3] A. L. Hodgkin, A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve”, The Journal of Physiology, 117:4 (1952), 500–544 | DOI
[4] H. P. Schwan (ed.), Biological engineering, McGraw-Hill Companies, 1969
[5] E. De Schutter (ed.), Computational modeling methods for neuroscientists, The MIT Press, 2009, 432 pp. | MR
[6] J. Baladron, D. Fasoli, O. Faugeras, J. Touboul, “Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons”, The Journal of Mathematical Neuroscience, 2:1 (2012), 10 | DOI | MR | Zbl
[7] J. P. Keener, J. Sneyd, Mathematical physiology, Springer, New York, 1998 | MR | Zbl
[8] O. Valles-Codina, R. Mobius, S. Rudiger, L. Schimansky-Geier, “Traveling echo waves in an array of excitable elements with time-delayed coupling”, Physical Review E, 83:3 (2011), 036209 | DOI | MR
[9] D. Rankovic, “Bifurcations of Fitzhugh-Nagumo excitable systems with chemical delayed coupling”, Matematickiy vesnik, 63:2 (2011), 103–114 | MR | Zbl
[10] W. Shin, S. G. Lee, S. Kim, “Stochastic excitation of coherent dynamical states of two coupled FitzHugh-Nagumo neurons”, Journal of the Korean Physical Society, 48 (2006), 179–185
[11] D. Hansel, G. Mato, C. Meunier, “Phase dynamics for weakly coupled Hodgkin-Huxley neurons”, EPL (Europhysics Letters), 23:5 (1993), 367 | DOI
[12] A. Destexhe, Z. F. Mainen, T. J. Sejnowski, “An efficient method for computing synaptic conductances based on a kinetic model of receptor binding”, Neural Computation, 6:1 (1994), 14–18 | DOI | MR