On born of in-phase limit cycle in ensemble of excitatory coupled FitzHugh-Nagumo elements
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 3, pp. 273-281.

Voir la notice de l'article provenant de la source Math-Net.Ru

We proposed and studied numerically efficient phenomenological model of ensemble of two FitzHugh-Nagumo neuron-like elements that are coupled by symmetric synaptic excitatory coupling. This coupling is defined by function that depends on phase of active element and that is smooth approximation of rectangular impulse function. Above-mentioned coupling depends on three parameters that define the beginning of element activation, the duration of the activation and the coupling strength. We show analytically that in the phase space of the model there exists stable in-phase limit cycle that corresponds to regular oscillations with equal phases and frequencies of elements. It is proved that this limit cycle is a result of supercritical Andronov-Hopf bifurcation. The chart of activity regimes is depicted on the plane of parameters that define beginning and duration of activation. The boundaries of bifurcations that lead to birth of this cycle are found.
Keywords: FitzHugh-Nagumo system, excitatory coupling, in-phase spike activity
Mots-clés : neural ensemble, Andronov-Hopf bifurcation.
@article{SVMO_2018_20_3_a1,
     author = {A. G. Korotkov and T. A. Levanova},
     title = {On born of in-phase limit cycle in ensemble of excitatory coupled {FitzHugh-Nagumo} elements},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {273--281},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a1/}
}
TY  - JOUR
AU  - A. G. Korotkov
AU  - T. A. Levanova
TI  - On born of in-phase limit cycle in ensemble of excitatory coupled FitzHugh-Nagumo elements
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 273
EP  - 281
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a1/
LA  - ru
ID  - SVMO_2018_20_3_a1
ER  - 
%0 Journal Article
%A A. G. Korotkov
%A T. A. Levanova
%T On born of in-phase limit cycle in ensemble of excitatory coupled FitzHugh-Nagumo elements
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 273-281
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a1/
%G ru
%F SVMO_2018_20_3_a1
A. G. Korotkov; T. A. Levanova. On born of in-phase limit cycle in ensemble of excitatory coupled FitzHugh-Nagumo elements. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 3, pp. 273-281. http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a1/

[1] C. Koch, Biophysics of computation: information processing in single neurons, Oxford University Press, 2004

[2] E. De Schutter, ed., Computational neuroscience: realistic modeling for experimentalists, CRC Press, 2000 | MR

[3] A. L. Hodgkin, A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve”, The Journal of Physiology, 117:4 (1952), 500–544 | DOI

[4] H. P. Schwan (ed.), Biological engineering, McGraw-Hill Companies, 1969

[5] E. De Schutter (ed.), Computational modeling methods for neuroscientists, The MIT Press, 2009, 432 pp. | MR

[6] J. Baladron, D. Fasoli, O. Faugeras, J. Touboul, “Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons”, The Journal of Mathematical Neuroscience, 2:1 (2012), 10 | DOI | MR | Zbl

[7] J. P. Keener, J. Sneyd, Mathematical physiology, Springer, New York, 1998 | MR | Zbl

[8] O. Valles-Codina, R. Mobius, S. Rudiger, L. Schimansky-Geier, “Traveling echo waves in an array of excitable elements with time-delayed coupling”, Physical Review E, 83:3 (2011), 036209 | DOI | MR

[9] D. Rankovic, “Bifurcations of Fitzhugh-Nagumo excitable systems with chemical delayed coupling”, Matematickiy vesnik, 63:2 (2011), 103–114 | MR | Zbl

[10] W. Shin, S. G. Lee, S. Kim, “Stochastic excitation of coherent dynamical states of two coupled FitzHugh-Nagumo neurons”, Journal of the Korean Physical Society, 48 (2006), 179–185

[11] D. Hansel, G. Mato, C. Meunier, “Phase dynamics for weakly coupled Hodgkin-Huxley neurons”, EPL (Europhysics Letters), 23:5 (1993), 367 | DOI

[12] A. Destexhe, Z. F. Mainen, T. J. Sejnowski, “An efficient method for computing synaptic conductances based on a kinetic model of receptor binding”, Neural Computation, 6:1 (1994), 14–18 | DOI | MR