Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_2_a7, author = {D. V. Balandin and E. N. Ezhov and I. A. Fedotov}, title = {Two-criteria problems for optimal protection of elastic structures from vibration}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {215--224}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a7/} }
TY - JOUR AU - D. V. Balandin AU - E. N. Ezhov AU - I. A. Fedotov TI - Two-criteria problems for optimal protection of elastic structures from vibration JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 215 EP - 224 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a7/ LA - ru ID - SVMO_2018_20_2_a7 ER -
%0 Journal Article %A D. V. Balandin %A E. N. Ezhov %A I. A. Fedotov %T Two-criteria problems for optimal protection of elastic structures from vibration %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 215-224 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a7/ %G ru %F SVMO_2018_20_2_a7
D. V. Balandin; E. N. Ezhov; I. A. Fedotov. Two-criteria problems for optimal protection of elastic structures from vibration. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 215-224. http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a7/
[1] I. G. Buckle, R. L. Mayes, “Seismic isolation: history, application, and performance –a World View”, Earthquake Spectra, 6:2 (1990), 161–201 | DOI
[2] D. Karnopp, “Active and semi-active vibration isolation”, J. Mech. Des., 117:B (1995), 177–185 | DOI
[3] D. V. Balandin , N. N. Bolotnik, Pilkey W. D. Pilkey, “Review: optimal shock and vibration isolation”, Shock and Vibration, 5:2 (1998), 73–87 | DOI
[4] D.V. Balandin, N.N. Bolotnik, W.D. Pilkey, Optimal protection from impact, shock, and vibration, Gordon and Breach Science Publishers, Amsterdam, 2001
[5] R.A. Ibrahim, “Recent advances in nonlinear passive vibration isolators”, Journal of Sound and Vibration, 314:3–5 (2008), 371–452 | DOI
[6] S. J. Patil, G. R. Reddy, “State of art review – base isolation systems for structures”, International Journal of Emerging Technology and Advanced Engineering, 2:7 (2012), 438–453
[7] M.Z. Kolovskiy, Automatic control of vibroprotection systems, Nauka, Moscow, 1976, 317 pp. (In Russ.)
[8] D.A. Wilson, “Convolution and Hankel operator norms for linear systems”, IEEE Trans. Autom. Control, 34 (1989), 94–97 | DOI | MR | Zbl
[9] M. A. Rotea, “The generalized $H_2$ control problem”, Automatica, 29:2 (1993), 373–385 | DOI | MR | Zbl
[10] D.V. Balandin, M.M. Kogan, “Pareto optimal generalized $H_2$ Control and vibroprotection problems”, Automation and Remote Control, 78:8 (2017), 1417– 1429 | Zbl
[11] D.V. Balandin, M.M. Kogan, “Pareto optimal generalized $H_2$ control and optimal protection from vibration”, IFAC-PapersOnLine, 50:1 (2017), 4442–4447 | DOI | MR
[12] D.V. Balandin, M.M. Kogan, Synthesis of control laws based on linear matrix inequalities, Fizmatlit Publ., Moscow, 2007, 281 pp. (In Russ.)
[13] Y.B. Germeyer, Introduction to theory of operations research', Nauka Publ., Moscow, 1971, 384 pp. (In Russ.) | MR
[14] H. Nishimura, A. Kojima, “Seismic isolation control for a buildinglike structure”, IEEE Control Systems, 19:6 (1999), 38–44
[15] D. Balandin, M. Kogan, “LMI-based optimal attenuation of multi-storey building oscillations under seismic excitations”, Structural Control and Health Monitoring, 12:2 (2005), 213–224 | DOI