Two-criteria problems for optimal protection of elastic structures from vibration
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 215-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a multi-objective formulation with criteria such as the maximal deformation of the elastic object to be protected and maximal deformations of the protection devices, a new class of optimal vibration protection problems is considered. The mathematical problem is to find a linear feedback control minimizing the above criteria in Pareto sense. A general approach to solving these problems based on results of modern control theory using linear matrix inequalities technique is presented. A system of linear matrix inequalities for obtaining the desired gain matrix is derived. An example of a solution of two-criteria problem for a multistorey building under seismic disturbances is given. Pareto set on the plane of the criteria is constructed. The «ideal» Pareto optimal isolator and optimal isolators of active and passive types are compared as well. It is shown that the «active» vibration isolators are not much better than the passive one, but all these isolators are noticeably inferior to the «ideal» vibration isolator.
Keywords: optimal vibration protection, multi-criteria problem, linear matrix inequalities, Germeyer convolution.
@article{SVMO_2018_20_2_a7,
     author = {D. V. Balandin and E. N. Ezhov and I. A. Fedotov},
     title = {Two-criteria problems for optimal protection of elastic structures from vibration},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {215--224},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a7/}
}
TY  - JOUR
AU  - D. V. Balandin
AU  - E. N. Ezhov
AU  - I. A. Fedotov
TI  - Two-criteria problems for optimal protection of elastic structures from vibration
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 215
EP  - 224
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a7/
LA  - ru
ID  - SVMO_2018_20_2_a7
ER  - 
%0 Journal Article
%A D. V. Balandin
%A E. N. Ezhov
%A I. A. Fedotov
%T Two-criteria problems for optimal protection of elastic structures from vibration
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 215-224
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a7/
%G ru
%F SVMO_2018_20_2_a7
D. V. Balandin; E. N. Ezhov; I. A. Fedotov. Two-criteria problems for optimal protection of elastic structures from vibration. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 215-224. http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a7/

[1] I. G. Buckle, R. L. Mayes, “Seismic isolation: history, application, and performance –a World View”, Earthquake Spectra, 6:2 (1990), 161–201 | DOI

[2] D. Karnopp, “Active and semi-active vibration isolation”, J. Mech. Des., 117:B (1995), 177–185 | DOI

[3] D. V. Balandin , N. N. Bolotnik, Pilkey W. D. Pilkey, “Review: optimal shock and vibration isolation”, Shock and Vibration, 5:2 (1998), 73–87 | DOI

[4] D.V. Balandin, N.N. Bolotnik, W.D. Pilkey, Optimal protection from impact, shock, and vibration, Gordon and Breach Science Publishers, Amsterdam, 2001

[5] R.A. Ibrahim, “Recent advances in nonlinear passive vibration isolators”, Journal of Sound and Vibration, 314:3–5 (2008), 371–452 | DOI

[6] S. J. Patil, G. R. Reddy, “State of art review – base isolation systems for structures”, International Journal of Emerging Technology and Advanced Engineering, 2:7 (2012), 438–453

[7] M.Z. Kolovskiy, Automatic control of vibroprotection systems, Nauka, Moscow, 1976, 317 pp. (In Russ.)

[8] D.A. Wilson, “Convolution and Hankel operator norms for linear systems”, IEEE Trans. Autom. Control, 34 (1989), 94–97 | DOI | MR | Zbl

[9] M. A. Rotea, “The generalized $H_2$ control problem”, Automatica, 29:2 (1993), 373–385 | DOI | MR | Zbl

[10] D.V. Balandin, M.M. Kogan, “Pareto optimal generalized $H_2$ Control and vibroprotection problems”, Automation and Remote Control, 78:8 (2017), 1417– 1429 | Zbl

[11] D.V. Balandin, M.M. Kogan, “Pareto optimal generalized $H_2$ control and optimal protection from vibration”, IFAC-PapersOnLine, 50:1 (2017), 4442–4447 | DOI | MR

[12] D.V. Balandin, M.M. Kogan, Synthesis of control laws based on linear matrix inequalities, Fizmatlit Publ., Moscow, 2007, 281 pp. (In Russ.)

[13] Y.B. Germeyer, Introduction to theory of operations research', Nauka Publ., Moscow, 1971, 384 pp. (In Russ.) | MR

[14] H. Nishimura, A. Kojima, “Seismic isolation control for a buildinglike structure”, IEEE Control Systems, 19:6 (1999), 38–44

[15] D. Balandin, M. Kogan, “LMI-based optimal attenuation of multi-storey building oscillations under seismic excitations”, Structural Control and Health Monitoring, 12:2 (2005), 213–224 | DOI