Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_1_a4, author = {D. S. Taletskii}, title = {On properties of solution of a reccurent equation appearing in enumeration of maximal independent sets in complete trees}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {46--54}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a4/} }
TY - JOUR AU - D. S. Taletskii TI - On properties of solution of a reccurent equation appearing in enumeration of maximal independent sets in complete trees JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 46 EP - 54 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a4/ LA - ru ID - SVMO_2018_20_1_a4 ER -
%0 Journal Article %A D. S. Taletskii %T On properties of solution of a reccurent equation appearing in enumeration of maximal independent sets in complete trees %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 46-54 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a4/ %G ru %F SVMO_2018_20_1_a4
D. S. Taletskii. On properties of solution of a reccurent equation appearing in enumeration of maximal independent sets in complete trees. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 46-54. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a4/
[1] A. D. Korshunov, A. A. Sapozhenko, “On the number of binary codes with distance two”, Problemy kibernetiki, 40 (1983), 111–130 (In Russ.) | Zbl
[2] P. Kirschenhofer, H. Prodinger, R. Tichy, “Fibonacci numbers of graphs: II”, The Fibonacci Quarterly, 21:3 (1983), 219–229 | MR | Zbl
[3] P. Kirschenhofer, H. Prodinger, R. Tichy, “Fibonacci numbers of graphs: III”, Proceedings of the First International Conference on Fibonacci Numbers and Applications, 1986, 105–120 | DOI | MR | Zbl
[4] D. S. Taletskii, D. S. Malyshev, “On the number of maximal independent sets in complete $q$-ary trees”, Diskretnya Matematika, 28:4 (2016), 139–149 (In Russ.) | DOI | MR
[5] N. J. Calkin, H. S. Wilf, “The number of independent sets in a grid graph”, SIAM Journal of Discrete Mathematics, 11:1 (1997), 54–60 | DOI | MR
[6] S. Oh, S. Lee, “Enumerating independent vertex sets in grid graphs”, Linear Algebra and its Applications, 510 (2016), 192–204 | DOI | MR | Zbl
[7] R. Euler, “The Fibonacci number of a grid graph and a new class of integer sequences”, Journal of Integer Sequences, 8:07.2.6 (2005), 1–12 | MR
[8] R. Euler, P. Oleksik, Z. Skupien, “Counting maximal distance-independent sets in grid graphs”, Discussiones Mathematicae Graph Theory, 33:3 (2013), 531–557 | DOI | MR | Zbl