Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_1_a1, author = {E. V. Zhuzhoma and N. V. Isaenkova and V. S. Medvedev}, title = {Many-dimensional solenoid invariant saddle-type sets}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {23--29}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a1/} }
TY - JOUR AU - E. V. Zhuzhoma AU - N. V. Isaenkova AU - V. S. Medvedev TI - Many-dimensional solenoid invariant saddle-type sets JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 23 EP - 29 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a1/ LA - ru ID - SVMO_2018_20_1_a1 ER -
%0 Journal Article %A E. V. Zhuzhoma %A N. V. Isaenkova %A V. S. Medvedev %T Many-dimensional solenoid invariant saddle-type sets %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 23-29 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a1/ %G ru %F SVMO_2018_20_1_a1
E. V. Zhuzhoma; N. V. Isaenkova; V. S. Medvedev. Many-dimensional solenoid invariant saddle-type sets. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 23-29. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a1/
[1] V. V. Nemytskiy, V. V. Stepanov, Qualitative Theory Of Differential Equations, OGIZ, M.–L., 1947, 448 pp. (In Russ.) | MR
[2] L. Vietoris, “Über den höheren Zusammenhang kompakter Räume und Klasse von zusammenhangstreuen Addildungen”, Math. Ann., 97 (1927), 454–472 | DOI | MR | Zbl
[3] F. Takens, “Multiplications in solenoids as hyperbolic attractors”, Topology and Appl., 152 (2005), 219–225 | DOI | MR | Zbl
[4] J. M. Aarts, R. J. Fokkink, “The classification of solenoids”, Proc. of Amer. Math. Soc., 111:4 (1991), 1161–1163 | DOI | MR | Zbl
[5] R. H. Bing, “A simple closed curve is the only homogeneous bounded plane continuum that contains an arc”, Canad. J. Math., 12 (1960), 209–230 | DOI | MR | Zbl
[6] R.H. Bing, “Embedding circle-like continua in the plane”, Canadian Journ. Math., 14 (1962), 113–128 | DOI | MR | Zbl
[7] D. V. Anosov, “Smooth dynamical systems. Chapter 1”, Dynamical systems – 1, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 1, 1985, 156–178 (In Russ.)
[8] D. V. Anosov, V. V. Solodov, “Hyperbolic sets”, Dynamical systems – 9, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 66, 1991, 12–99 (In Russ.)
[9] C. Robinson, Dynamical systems: stability, symbolic dynamics, and chaos, 2nd ed., CRC Press, Boca Qaton, 1999, 506 pp. | MR | Zbl
[10] Yu. Ilyashenko, Li Veigu, Nonlocal bifurcations, MTSNMO-CheRo Publ., Moscow, 1999, 415 pp. (In Russ.) | MR
[11] S. Kh. Aranson, G. R. Belitsky, E. V. Zhuzhoma, “Introduction to Qualitative Theory of Dynamical Systems on Closed Surfaces”, Translations of Math. Monographs, 153, Amer. Math. Soc., 1996, 344–367 | MR
[12] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[13] D. V. Turaev, L. P. Shilnikov, “About disasters a blue sky”, Doklady RAN, 342:5 (1995), 596–599 (In Russ.) | MR | Zbl
[14] H. G. Bothe, “The ambient structure of expanding attractors, II. Solenoids in 3-manifolds”, Math. Nachr., 112 (1983), 69–102 | DOI | MR | Zbl
[15] B. Jiang, Y. Ni, S. Wang, “3-manifolds that admit knotted solenoids as attractors”, Trans. Amer. Math. Soc., 356 (2004), 4371–4382 | DOI | MR | Zbl
[16] J. Ma, Y. Bin, “The realization of Smale solenoid type attractors in 3-manifolds”, Topology and Appl., 154:11 (2007), 3021–3031 | MR | Zbl
[17] S. I. Weinstein, Ya. B. Zeldovich, “On the origin of magnetic fields in astrophysics (Dynamo Turbulent mechanisms")”, Phys. Usp., 106:3 (1972), 431–457 (In Russ.) | DOI
[18] E. V. Zhuzhoma, V. S. Medvedev, A. E. Shishenkova., “A model for fast cinematic Dynamo”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 15:2 (2013), 23-26 (In Russ.)
[19] E. V. Zhuzhoma, N. V. Isaenkova, “Zero-dimensional solenoidal base sets”, Sb. Math., 202:3 (2011), 351-–372 (In Russ.) | DOI | MR | Zbl
[20] R. Bowen, “Topological entropy and Axiom A”, Global Analysis, Proc. Sympos. Pure Math., 14, 1970, 23–41 | DOI | MR | Zbl