Many-dimensional solenoid invariant saddle-type sets
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 23-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we construct some example of smooth diffeomorphism of closed manifold. This diffeomorphism has one-dimensional (in topological sense) basic set with stable invariant manifold of arbitrary nonzero dimension and the unstable invariant manifold of arbitrary dimension not less than two. The basic set has a saddle type, i.e. is neither attractor nor repeller. In addition, it follows from the construction that the diffeomorphism has a positive entropy and is conservative (i.e. its jacobian equals one) in some neighborhood of the one-dimensional solenoidal basic set. The construction represented in this paper allows to construct a diffeomorphism with the properties stated above on the manifold that is diffeomorphic to the prime product of the circle and the sphere of codimension one.
Keywords: discrete dynamical system, basic set, separator, topological entropy.
Mots-clés : solenoid
@article{SVMO_2018_20_1_a1,
     author = {E. V. Zhuzhoma and N. V. Isaenkova and V. S. Medvedev},
     title = {Many-dimensional solenoid invariant saddle-type sets},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {23--29},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a1/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - N. V. Isaenkova
AU  - V. S. Medvedev
TI  - Many-dimensional solenoid invariant saddle-type sets
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 23
EP  - 29
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a1/
LA  - ru
ID  - SVMO_2018_20_1_a1
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A N. V. Isaenkova
%A V. S. Medvedev
%T Many-dimensional solenoid invariant saddle-type sets
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 23-29
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a1/
%G ru
%F SVMO_2018_20_1_a1
E. V. Zhuzhoma; N. V. Isaenkova; V. S. Medvedev. Many-dimensional solenoid invariant saddle-type sets. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 23-29. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a1/

[1] V. V. Nemytskiy, V. V. Stepanov, Qualitative Theory Of Differential Equations, OGIZ, M.–L., 1947, 448 pp. (In Russ.) | MR

[2] L. Vietoris, “Über den höheren Zusammenhang kompakter Räume und Klasse von zusammenhangstreuen Addildungen”, Math. Ann., 97 (1927), 454–472 | DOI | MR | Zbl

[3] F. Takens, “Multiplications in solenoids as hyperbolic attractors”, Topology and Appl., 152 (2005), 219–225 | DOI | MR | Zbl

[4] J. M. Aarts, R. J. Fokkink, “The classification of solenoids”, Proc. of Amer. Math. Soc., 111:4 (1991), 1161–1163 | DOI | MR | Zbl

[5] R. H. Bing, “A simple closed curve is the only homogeneous bounded plane continuum that contains an arc”, Canad. J. Math., 12 (1960), 209–230 | DOI | MR | Zbl

[6] R.H. Bing, “Embedding circle-like continua in the plane”, Canadian Journ. Math., 14 (1962), 113–128 | DOI | MR | Zbl

[7] D. V. Anosov, “Smooth dynamical systems. Chapter 1”, Dynamical systems – 1, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 1, 1985, 156–178 (In Russ.)

[8] D. V. Anosov, V. V. Solodov, “Hyperbolic sets”, Dynamical systems – 9, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 66, 1991, 12–99 (In Russ.)

[9] C. Robinson, Dynamical systems: stability, symbolic dynamics, and chaos, 2nd ed., CRC Press, Boca Qaton, 1999, 506 pp. | MR | Zbl

[10] Yu. Ilyashenko, Li Veigu, Nonlocal bifurcations, MTSNMO-CheRo Publ., Moscow, 1999, 415 pp. (In Russ.) | MR

[11] S. Kh. Aranson, G. R. Belitsky, E. V. Zhuzhoma, “Introduction to Qualitative Theory of Dynamical Systems on Closed Surfaces”, Translations of Math. Monographs, 153, Amer. Math. Soc., 1996, 344–367 | MR

[12] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[13] D. V. Turaev, L. P. Shilnikov, “About disasters a blue sky”, Doklady RAN, 342:5 (1995), 596–599 (In Russ.) | MR | Zbl

[14] H. G. Bothe, “The ambient structure of expanding attractors, II. Solenoids in 3-manifolds”, Math. Nachr., 112 (1983), 69–102 | DOI | MR | Zbl

[15] B. Jiang, Y. Ni, S. Wang, “3-manifolds that admit knotted solenoids as attractors”, Trans. Amer. Math. Soc., 356 (2004), 4371–4382 | DOI | MR | Zbl

[16] J. Ma, Y. Bin, “The realization of Smale solenoid type attractors in 3-manifolds”, Topology and Appl., 154:11 (2007), 3021–3031 | MR | Zbl

[17] S. I. Weinstein, Ya. B. Zeldovich, “On the origin of magnetic fields in astrophysics (Dynamo Turbulent mechanisms")”, Phys. Usp., 106:3 (1972), 431–457 (In Russ.) | DOI

[18] E. V. Zhuzhoma, V. S. Medvedev, A. E. Shishenkova., “A model for fast cinematic Dynamo”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 15:2 (2013), 23-26 (In Russ.)

[19] E. V. Zhuzhoma, N. V. Isaenkova, “Zero-dimensional solenoidal base sets”, Sb. Math., 202:3 (2011), 351-–372 (In Russ.) | DOI | MR | Zbl

[20] R. Bowen, “Topological entropy and Axiom A”, Global Analysis, Proc. Sympos. Pure Math., 14, 1970, 23–41 | DOI | MR | Zbl