Modified gauge conditions for Maxwell equations in quasi-stationary magnetic approximation
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 4, pp. 55-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial-boundary value problem for the Maxwell equations in the quasi-stationary magnetic approximation with magnetic boundary conditions is studied. The case of heterogeneous media containing conductive and non-conductive inclusions is considered. The problem is formulated in terms of vector magnetic and scalar electric potentials. The special gauge conditions (modified Coulomb and Lorenz gauges) that allow to formulate problems of independent determination of vector magnetic potential are proposed. The correctness of the problem statement under general conditions on coefficients is proved. The possibility of Lions’ theorem application is proved using estimates for scalar products of vector fields. The relation between solutions of the problems with different gauges is studied. The correspondence between the problem formulation for magnetic vector potential and the initial problem formulation for the vector magnetic potential and scalar electric potential is considered.
Keywords: Maxwell equations, quasi-stationary magnetic approximation, heterogeneous media, vector potential, gauge conditions.
@article{SVMO_2017_19_4_a4,
     author = {A. V. Kalinin and A. A. Tyukhtina and O. A. Izosimova},
     title = {Modified gauge conditions for {Maxwell} equations in quasi-stationary magnetic approximation},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {55--67},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a4/}
}
TY  - JOUR
AU  - A. V. Kalinin
AU  - A. A. Tyukhtina
AU  - O. A. Izosimova
TI  - Modified gauge conditions for Maxwell equations in quasi-stationary magnetic approximation
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 55
EP  - 67
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a4/
LA  - ru
ID  - SVMO_2017_19_4_a4
ER  - 
%0 Journal Article
%A A. V. Kalinin
%A A. A. Tyukhtina
%A O. A. Izosimova
%T Modified gauge conditions for Maxwell equations in quasi-stationary magnetic approximation
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 55-67
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a4/
%G ru
%F SVMO_2017_19_4_a4
A. V. Kalinin; A. A. Tyukhtina; O. A. Izosimova. Modified gauge conditions for Maxwell equations in quasi-stationary magnetic approximation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 4, pp. 55-67. http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a4/

[1] A. Alonso Rodriguez, A. Valli, Eddy current approximation of Maxwell equations, Springer-Verlag Italia, Milano, 2010, 347 pp. | MR | Zbl

[2] S. Meddahi, V. Selgas, “An $H$-based FEM-BEM formulation for a time dependent eddy current problem”, App. Num. Math., 58 (2008), 1061–1083 | DOI | MR | Zbl

[3] L. Arnold, B. Harrach, “A unified variational formulation for the parabolic-elliptic eddy current equations”, SIAM J. Appl. Math., 72 (2012), 558–576 | DOI | MR | Zbl

[4] O. Biro, A. Valli, “The Coulimb gauged vector potential formulation for the eddy-current problem in general geometry: Well-posedness and numerical approximation”, Comput. Meth. Appl. Mech. Engrg., 196 (2007), 890–904 | DOI | MR

[5] A. Bossavit, “On the Lorenz gauge”, COMPEL, 18 (1999), 323–336 | DOI | Zbl

[6] T. Chen, T. Kang, G. Lu, L. Wu, “A $(T,\psi)-\psi_e$ decoupled scheme for a time-dependent multiply-connected eddy current problem”, Math. Meth. Appl. Sci., 37 (2014), 343–359 | DOI | MR | Zbl

[7] A. V. Kalinin, A. A. Tiukhtina, S. R. Lavrova, “Modified Coulomb and Lorenz gauges in the modeling of low-frequency electromagnetic processes”, IOP Conf. Ser.: Mater. Sci. Eng., 158 (2016), 012046 | DOI

[8] A. V. Kalinin, A. A. Kalinkina, “Quasistationary initial–boundary value problems for the system of Maxwell equations”, Vestnik Nizhegorod. Gos. Univ. Mat. Model. Optim. Upravl., 1 (2003), 21–38 (In Russ.)

[9] A. V. Kalinin, M. I. Sumin, A. A. Tyukhtina, “On the inverse problems of final observation for the system of Maxwell equations in the quasistationary magnetic approximation and stable sequential Lagrange principles of its solution”, Comput. Math. Math. Phys., 57:2 (2017), 18–40 | DOI | MR

[10] A. V. Kalinin, A. A. Kalinkina, “Lp-estimates for vector fields”, Izv. Vyssh. Uchebn. Zaved. Mat., 3 (2004), 26–35 (In Russ.) | Zbl

[11] A. V. Kalinin, A. A. Tyukhtina, “Quasistationary electromagnetic fields in inhomogeneous media with non-conductive and low conductive inclusions”, Journal SVMO, 18:4 (2016), 119–133 (In Russ.)

[12] L. D. Landau, E. M. Lifshits, Theoretical Physics, v. 8, Elektrodinamika sploshnykh sred [Electrodynamics of continuous media], Nauka, Moscow, 1982, 621 pp. (In Russ.) | MR

[13] V. Girault, P. Raviart, Finite element methods for Navier–Stokes equations, Springler-Verlag, N.Y., 1986, 374 pp. | MR | Zbl

[14] M. Cessenat, Mathematical methods in electromagnetism: linear theory and applications, World Scientific, Singapore, 1996, 396 pp. | MR | Zbl

[15] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technoogy, v. 5, Evolution Problems I, Springer-Verlag, Berlin, 2000, 739 pp. | MR