Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_4_a4, author = {A. V. Kalinin and A. A. Tyukhtina and O. A. Izosimova}, title = {Modified gauge conditions for {Maxwell} equations in quasi-stationary magnetic approximation}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {55--67}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a4/} }
TY - JOUR AU - A. V. Kalinin AU - A. A. Tyukhtina AU - O. A. Izosimova TI - Modified gauge conditions for Maxwell equations in quasi-stationary magnetic approximation JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 55 EP - 67 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a4/ LA - ru ID - SVMO_2017_19_4_a4 ER -
%0 Journal Article %A A. V. Kalinin %A A. A. Tyukhtina %A O. A. Izosimova %T Modified gauge conditions for Maxwell equations in quasi-stationary magnetic approximation %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2017 %P 55-67 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a4/ %G ru %F SVMO_2017_19_4_a4
A. V. Kalinin; A. A. Tyukhtina; O. A. Izosimova. Modified gauge conditions for Maxwell equations in quasi-stationary magnetic approximation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 4, pp. 55-67. http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a4/
[1] A. Alonso Rodriguez, A. Valli, Eddy current approximation of Maxwell equations, Springer-Verlag Italia, Milano, 2010, 347 pp. | MR | Zbl
[2] S. Meddahi, V. Selgas, “An $H$-based FEM-BEM formulation for a time dependent eddy current problem”, App. Num. Math., 58 (2008), 1061–1083 | DOI | MR | Zbl
[3] L. Arnold, B. Harrach, “A unified variational formulation for the parabolic-elliptic eddy current equations”, SIAM J. Appl. Math., 72 (2012), 558–576 | DOI | MR | Zbl
[4] O. Biro, A. Valli, “The Coulimb gauged vector potential formulation for the eddy-current problem in general geometry: Well-posedness and numerical approximation”, Comput. Meth. Appl. Mech. Engrg., 196 (2007), 890–904 | DOI | MR
[5] A. Bossavit, “On the Lorenz gauge”, COMPEL, 18 (1999), 323–336 | DOI | Zbl
[6] T. Chen, T. Kang, G. Lu, L. Wu, “A $(T,\psi)-\psi_e$ decoupled scheme for a time-dependent multiply-connected eddy current problem”, Math. Meth. Appl. Sci., 37 (2014), 343–359 | DOI | MR | Zbl
[7] A. V. Kalinin, A. A. Tiukhtina, S. R. Lavrova, “Modified Coulomb and Lorenz gauges in the modeling of low-frequency electromagnetic processes”, IOP Conf. Ser.: Mater. Sci. Eng., 158 (2016), 012046 | DOI
[8] A. V. Kalinin, A. A. Kalinkina, “Quasistationary initial–boundary value problems for the system of Maxwell equations”, Vestnik Nizhegorod. Gos. Univ. Mat. Model. Optim. Upravl., 1 (2003), 21–38 (In Russ.)
[9] A. V. Kalinin, M. I. Sumin, A. A. Tyukhtina, “On the inverse problems of final observation for the system of Maxwell equations in the quasistationary magnetic approximation and stable sequential Lagrange principles of its solution”, Comput. Math. Math. Phys., 57:2 (2017), 18–40 | DOI | MR
[10] A. V. Kalinin, A. A. Kalinkina, “Lp-estimates for vector fields”, Izv. Vyssh. Uchebn. Zaved. Mat., 3 (2004), 26–35 (In Russ.) | Zbl
[11] A. V. Kalinin, A. A. Tyukhtina, “Quasistationary electromagnetic fields in inhomogeneous media with non-conductive and low conductive inclusions”, Journal SVMO, 18:4 (2016), 119–133 (In Russ.)
[12] L. D. Landau, E. M. Lifshits, Theoretical Physics, v. 8, Elektrodinamika sploshnykh sred [Electrodynamics of continuous media], Nauka, Moscow, 1982, 621 pp. (In Russ.) | MR
[13] V. Girault, P. Raviart, Finite element methods for Navier–Stokes equations, Springler-Verlag, N.Y., 1986, 374 pp. | MR | Zbl
[14] M. Cessenat, Mathematical methods in electromagnetism: linear theory and applications, World Scientific, Singapore, 1996, 396 pp. | MR | Zbl
[15] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technoogy, v. 5, Evolution Problems I, Springer-Verlag, Berlin, 2000, 739 pp. | MR