Regularization of generalized functions in convolution operator algebra
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 3, pp. 53-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of Cauchy integral calculation with the aid of n-fold multiple integral by integer-order operators is investigated. This n-fold multiple differentiation results in n-order uniform and non-uniform systems of ordinary differential equations. The solution of the first system is equal to the convolution of the second system’s solution with arbitrary function forming heterogeneity of the first system. This is the necessary condition of existence of the given problem’s solution. The convolution is a sufficient condition for establishing of the fraction order operator algebra that is equivalent to convolution operator algebra. Besides that, existence of the ordinary differential equation defining stability of time, is important, too. Subalgebra of fractional order less than 1 defines convolution operators as parametric generalized functions, their asymptotic values and unity operators. Both algebras determine identity of ordinary differential equations after substituting n-fold multiple operator integral in these equations. Vladimirov’s regularization according to Horsthemke-Saichev theorem corresponds to Bogolubov’s regularization for superfluidity. Time stability of superfluidity is described by the Newton equation. Parametric generalized functions and their symmetry are stable.
Keywords: generalized functions, regularization, convolution operator algebra, Cauchy integral.
@article{SVMO_2017_19_3_a4,
     author = {S. N. Nagornyh and D. S. Sablukov},
     title = {Regularization of generalized functions in convolution operator algebra},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {53--63},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a4/}
}
TY  - JOUR
AU  - S. N. Nagornyh
AU  - D. S. Sablukov
TI  - Regularization of generalized functions in convolution operator algebra
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 53
EP  - 63
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a4/
LA  - ru
ID  - SVMO_2017_19_3_a4
ER  - 
%0 Journal Article
%A S. N. Nagornyh
%A D. S. Sablukov
%T Regularization of generalized functions in convolution operator algebra
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 53-63
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a4/
%G ru
%F SVMO_2017_19_3_a4
S. N. Nagornyh; D. S. Sablukov. Regularization of generalized functions in convolution operator algebra. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 3, pp. 53-63. http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a4/

[1] Vladimirov V. S., Equations of mathematical hysics, Nauka Publ, Moscow, 1981, 512 pp. (In Russ.) | MR

[2] Yu. N. Drozhzhinov, B. I. Zav'yalov, Introduction to the theory of generalized functions., Lektsionnye kursy NOTs, 5, MIAN, Moscow, 2006, 164 pp. (In Russ.) | DOI

[3] Bogolubov N. N., “On the Theory of Superfluidity”, Izvestiya AN SSSR seriya fizicheskaya, 11:1 (1947), 77-90 (In Russ.)

[4] Nagornykh S. N., “Critical Parameters of Probability Density in Noise-Induced Transitions”, Jour. SVMO, 16:4 (2014), 50-52 (In Russ.) | Zbl

[5] S. N. Nagornykch, “On exoelectron emission kinetics under strain excitation of metals”, Proc. 4 Intern. Symp. Exoelectron Emission Dosimetry, Czech. Acad. Sci.@Atom Energy Com., Liblice, 1973, 178-193

[6] Lifshic, E. M., Pitaevsky, L. P., Statisticheskaya fizika., v. 2, Teoriya kondensirovannogo sostoyaniya, M. Nauka, 1978, 448 pp. (In Russ.) | MR

[7] A. P. Levanyuk, V. V. Osipov, “Edge luminescence of direct-gap semiconductors”, Uspekhi Fizicheskikh Nauk, 133:3 (1981) (In Russ.)

[8] Gelfand, I M., Shilov, G. E., Obobschennye funkcii i deystviya nad nimi, FIZMAT GIZ, M., 1959, 472 pp. (In Russ.) | MR