Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_3_a0, author = {A. M. Akhtyamov and R. Y. Galimov and A. V. Mouftakhov}, title = {Identification of boundary conditions at one of the ends of a segment}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {11--23}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a0/} }
TY - JOUR AU - A. M. Akhtyamov AU - R. Y. Galimov AU - A. V. Mouftakhov TI - Identification of boundary conditions at one of the ends of a segment JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 11 EP - 23 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a0/ LA - ru ID - SVMO_2017_19_3_a0 ER -
%0 Journal Article %A A. M. Akhtyamov %A R. Y. Galimov %A A. V. Mouftakhov %T Identification of boundary conditions at one of the ends of a segment %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2017 %P 11-23 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a0/ %G ru %F SVMO_2017_19_3_a0
A. M. Akhtyamov; R. Y. Galimov; A. V. Mouftakhov. Identification of boundary conditions at one of the ends of a segment. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 3, pp. 11-23. http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a0/
[1] G. M. L. Gradwell, Inverse Problems in Vibration, NIC Regulyarnaya i haoticheskaya dinamika, Institut komp'yuternyh iissledovanij, M.; Ishevsk, 2008, 608 pp. (In Russ.)
[2] M. T. Chu, G. H. Golub, Inverse Eigenvalue Problems: Theory, Algorithms, and Applications, University Press, Oxford, 2005, 406 pp. | MR | Zbl
[3] M. A. Naymark, Linear differential operators, Nauka, M., 1969, 526 pp. (In Russ.) | MR
[4] V. A. Marchenko, The operators of the Sturm-Liouville problem and their applications, Naukova dumka, Kiev, 1977, 332 pp. (In Russ.) | MR
[5] B. M. Levitan, The inverse Sturm-Liouville problem, Nauka, M., 1984, 240 pp. (In Russ.) | MR
[6] A. O. Vatul'yan, Inverse problems in solid mechanics, Fizmatlit, M., 2007, 224 pp. (In Russ.)
[7] A. O. Vatul'yan, A. V. Osipov, “About one approach to determine the parameters of the defect in the beam”, Defektoskopiya, 11 (2014), 37-47 (In Russ.)
[8] E. I. Shifrin, R. Ruotolo, “Natural frequencies of a beam with an arbitrary number of cracks”, Journal of Sound and Vibration, 222:3 (1999), 409–423 | DOI
[9] E. I. Shifrin, “Identification of a finite number of small cracks in a rod using natural frequencies”, Mechanical Systems and Signal Processing, 70–71 (2016), 613–624 | DOI
[10] M. A. Il'gamov, A. G. Hakimov, “Diagnosis of injuries of the cantilever beam with notch”, Defektoskopiya., 6 (2009), 83-89 (In Russ.)
[11] M. A. Il'gamov, A. G. Hakimov, “Diagnosis of fastening and damage beams on elastic supports”, Kontrol'. Defektoskopiya., 9 (2010), 57–63 (In Russ.)
[12] V. C. Gnuni, Z. B. Oganisyan, “The definition of boundary conditions of circular ring plates on the set frequencies of own fluctuations”, Izvestiya NAN RA, seriya “Mekhanika”., 44:5 (1991), 9-16 (In Russ.)
[13] Z. B. Oganisyan, “On one problem of reconstruction of boundary conditions on the ends of the rod at a predetermined range of frequencies of own fluctuations of cross”, Questions of optimal control, stability and strength of mechanical systems (scientific conference proceedings), Conference proceedings, Yerevan, 1997, 159-162 (In Russ.)
[14] Z. B. Oganisyan, “On one problem of reconstruction of boundary conditions on the edges of the plate at a given spectrum of frequencies of own fluctuations of cross”, Uchenye zapiski EGU., 1 (1991), 45-50 (In Russ.) | Zbl
[15] A. M. Akhtyamov, A. V. Mouftakhov, “Identification of boundary conditions using natural frequencies”, Inverse Problems in Science and Engineering, 12:4 (2004), 393–408 | DOI | MR
[16] A. M. Ahtyamov, A. V. Muftahov, “The correctness according to Tikhonov identification problem of fixing mechanical systems”, Sibirskij zhurnal industrial'noj matematiki., 25:4(52) (2012), 24-37 (In Russ.) | MR
[17] A. A. Aitbaeva, A. M. Ahtyamov, “On uniqueness of determination of the type of boundary conditions at one end of the rod at the three natural frequencies of oscillation”, Prikladnaya matematika i mekhanika., 80:3 (2016), 388-394 (In Russ.)
[18] A. V. Mouftakhov, On the Reconstruction of the Matrix from its Minors, 2006, arXiv: math/0603657
[19] P. Lankaster, Theory of matrices, Nauka, M., 1982, 272 pp. (In Russ.) | MR
[20] V. V. Bolotin, Vibration in engineering, Kolebaniya linejnyh sistem [Vibrations of linear systems], Mashinostroenie, M., 1978, 352 pp.