Morse-Smale flows and the model of the topology of magnetic fields in plasma
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 88-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is a continuation of the work [14] and is devoted to the presentation of results related to the construction of models of magnetic fields in an electrically conductive medium (plasma) in terms of dynamic systems. Research in this direction has been intensively pursued over the past 20 years. Since the solution of magnetic hydrodynamics’ equations is associated with certain difficulties approximate models of magnetic fields are used. A class of vector fields' models is constructed, united by the common name model of the topology of magnetic charges. Fields from this class generate continuous dynamical systems (flows) on three-dimensional manifolds with a sufficiently simple structure. First, the non-wandering set is finite and consists of hyperbolic equilibrium states. Second, these flows allow the existence of a so-called self-indexing energy function that allows them to be complete topological classified. In addition, fields of this class may be arbitrarily closely approximated by vector fields generating structurally stable flows. Particular attention is paid to the fields in the corona of the Sun, which is associated with the actual problem of energy release estimation in solar flares.
Keywords: singular points of the field, magnetic field lines, sinks, separatrix, separators, heteroclinic curves.
Mots-clés : sources
@article{SVMO_2017_19_1_a8,
     author = {A. N. Saharov and A. A. Shilovskaya},
     title = {Morse-Smale flows and the model of the topology of magnetic fields in plasma},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {88--101},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a8/}
}
TY  - JOUR
AU  - A. N. Saharov
AU  - A. A. Shilovskaya
TI  - Morse-Smale flows and the model of the topology of magnetic fields in plasma
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 88
EP  - 101
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a8/
LA  - ru
ID  - SVMO_2017_19_1_a8
ER  - 
%0 Journal Article
%A A. N. Saharov
%A A. A. Shilovskaya
%T Morse-Smale flows and the model of the topology of magnetic fields in plasma
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 88-101
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a8/
%G ru
%F SVMO_2017_19_1_a8
A. N. Saharov; A. A. Shilovskaya. Morse-Smale flows and the model of the topology of magnetic fields in plasma. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 88-101. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a8/

[1] L.D. Landau, E.M. Lifshits, Continuum electrodynamics, Nauka, M., 1982 (In Russ) | MR

[2] V.I. Arnold, V.S. Afraimovich, U.C. Iliashenko, L.P. Shilnikov, Bifurcation theory, Results of science and technology. Modern problems of mathematics, Nauka, M., 1985 (In Russ)

[3] V.Z. Grines, E.V. Zhuzhoma, V.S. Medvedev, O.V. Pochinka, “On the existence of magnetic lines connecting the zero points”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 16:1 (2014), 8–15 (In Russ) | Zbl

[4] V.Z. Grines, E.Ya. Gurevich, E.V. Zhuzoma, S.H. Zinina, “Heteroclinic curves of Morse-Smale diffeomorphisms and separators in a magnetic field of a plasma”, Nelineynaya dinamica, 10:4 (2014), 427–438 (In Russ) | Zbl

[5] V. Grines, T. Medvedev, O. Pochinka, E. Zhuzhoma, “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Physica D, 294 (2015), 1–5 | DOI | MR | Zbl

[6] E.V. Zhuzhoma, V.S. Medvedev, “Rozhdenie separatorov v magnitnykh polyakh”, Dinamicheskie sistemy, 2017 (to appear)

[7] E. Priest, T.Forbs, Magnetic reconnection: magnetohydrodynamic theory and applications, Phizmatlit, M., 2005 (In Russ)

[8] D.W. Longcope, “Topological Methods for the Analysis of Solar Magnetic Fields”, Living Rev. Solar Phys., 2:7 (2005), 5–72

[9] M.M. Molodenskiy, S.I. Syrovatskiy, “Magnetic field in active regions and its zero points”, Astronomicheskiy Zhurnal, 54 (1977), 1293–1304 (In Russ)

[10] V.S. Gorbachev, S.R. Kelner, B.V. Somov, A.S. Shvarts, “A new topological approach to the problem of the trigger of solar flares”, Astronomicheskiy Zhurnal, 65:3 (1988), 601–612 (In Russ) | MR

[11] E.R. Priest, V.S. Titov, “Magnetic Reconnection at Three-Dimensional Points”, Phil. Trans. R. Soc. A, 354 (1996), 2951–2992 | DOI | MR | Zbl

[12] D.W. Longcope, “Topology and current ribbons: a model for current, reconnection and flaring in a complex, evolving corona”, Solar Phys., 169:1 (1996), 91–121 | DOI

[13] H. Alfven, “On sunspots and the solar cycle”, Arc. F. Math. Astr. Phys., 29A (1943), 1-17

[14] M.L. Kolomiets, A.N. Sakharov, E.V. Tregubova, “The topology of magnetic fields and dynamical systems”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 18:1 (2016), 31–44 (In Russ)

[15] G. Hornig, K. Schindler, “Magnetic topology and the problem of its invariant definition”, Physics of Plasmas, 3 (1996), 781–793 | DOI | MR

[16] V.I. Arnold, Mathematical methods of classical mechanics, Nauka, M., 1974 (In Russ) | MR

[17] A.T. Fomenko, Differential geometry and topology, MGU, M., 1983 (In Russ)

[18] V. Grines, O. Pochinka, “Topological Classification of Global Magnetic Fields in the Solar Corona”, Solar Physics, 2017 (to appear)

[19] S. Smale, “On Gradient Dynamical Systems”, Annals of Math., 74:1 (1961), 199–206 | DOI | MR | Zbl

[20] A.O. Prishlyak, “Vector Morse-Smale fields without closed trajectories on three-dimensional manifolds”, Matem. zametki, 71:2 (2002), 254–260 (In Russ) | DOI | MR | Zbl

[21] V.Z. Grines, E.V. Zhuzoma, V.S. Medvedev, “New relations for Morse-Smale systems with trivially embedded one-dimensional separatrices”, Matem. sbornik, 194:7 (2003), 25–56 (In Russ) | DOI | MR | Zbl

[22] A.N. Tihonov, “On the dependence of solutions of differential equations on a small parameter”, Matem. sbornik, 22:2 (1948), 193–204 (In Russ) | Zbl