Using WENO schemes in mathematical modeling of gas mixture’s dynamics by the example of ethane pyrolysis
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 98-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper scheme with high order of precision is established for modeling of mixture’s laminar flow. This mixture is viscous heat-conducting gas where ethane pyrolysis reaction proceeds. Parallel computational algorithm using MPI technology is developed. To verify the scheme software is developed for calculation of reagent concentrations and gas-dynamic parameters for ethane pyrolysis in a closed reactor. Calculations are made for the gas flow in a metallic flow reactor with external heating of reaction zone. In reactor’s longitudinal section distributions of temperature, density and mass concentrations of reagents are found.
Keywords: WENO scheme, high order of accuracy, MPI technology, ethane pyrolysis.
@article{SVMO_2016_18_3_a9,
     author = {R. V. Zhalnin and E. E. Peskova and O. A. Stadnichenko and V. F. Tishkin},
     title = {Using {WENO} schemes in mathematical modeling of gas mixture{\textquoteright}s dynamics by the example of ethane pyrolysis},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {98--106},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a9/}
}
TY  - JOUR
AU  - R. V. Zhalnin
AU  - E. E. Peskova
AU  - O. A. Stadnichenko
AU  - V. F. Tishkin
TI  - Using WENO schemes in mathematical modeling of gas mixture’s dynamics by the example of ethane pyrolysis
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 98
EP  - 106
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a9/
LA  - ru
ID  - SVMO_2016_18_3_a9
ER  - 
%0 Journal Article
%A R. V. Zhalnin
%A E. E. Peskova
%A O. A. Stadnichenko
%A V. F. Tishkin
%T Using WENO schemes in mathematical modeling of gas mixture’s dynamics by the example of ethane pyrolysis
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 98-106
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a9/
%G ru
%F SVMO_2016_18_3_a9
R. V. Zhalnin; E. E. Peskova; O. A. Stadnichenko; V. F. Tishkin. Using WENO schemes in mathematical modeling of gas mixture’s dynamics by the example of ethane pyrolysis. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 98-106. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a9/

[1] V. N. Snytnikov, T. I. Mishchenko, Vl. N Snytnikov, S. E. Malykhin, V. I. Avdeev, V. N. Parmon, “Autocatalytic gas-phase dehydrogenation of ethane”, Research on Chemical Intermediates, 38 (2012), 1133 – 1147 | DOI

[2] O. A. Stadnichenko, V. N. Snytnikov, Vl. N. Snytnikov, N. S. Masyuk, “Mathematical modeling of ethane pyrolysis in a flow reactor with allowance for laser radiation effects”, Chemical Engineering Research and Design, 109 (2016), 405–413 | DOI

[3] O. A. Stadnichenko, V. N. Snytnikov, Vl. N. Snytnikov, “Matematicheskoe modelirovanie potokov mnogokomponentnogo gaza s energoemkimi khimicheskimi protsessami na primere piroliza etana”, Vychislitelnye metody i programmirovanie, 15 (2014), 658-668

[4] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report 97-65, 1997 | MR

[5] E. Oran, Dzh. Boris, Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990, 664 pp. | MR

[6] I. M. Gubaidullin, E. E. Peskova, O. S. Yazovtseva, “Matematicheskaya model dinamiki mnogokomponentnogo gaza na primere brutto-reaktsii piroliza etana”, Ogarev-online, 20 (2016) http://journal.mrsu.ru/arts/matematicheskaya-model-dinamiki-mnogokomponentnogo-gaza-na-primere-brutto-reakcii-piroliza-etana

[7] V. V. Rusanov, “Raschet vzaimodeistviya nestatsionarnykh udarnykh voln s prepyatstviyami”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 1:2 (1961), 267 – 279

[8] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159 – 193 | DOI | MR | Zbl

[9] R. V. Zhalnin, N. V. Zmitrenko, M. E. Ladonkina, V. F. Tishkin, “Chislennoe modelirovanie razvitiya neustoichivosti Rikhtmaiera–Meshkova s ispolzovaniem skhem vysokogo poryadka tochnosti”, Matematicheskoe modelirovanie, 19:10 (2007), 61 – 66 | MR | Zbl

[10] V. F. Tishkin, V. V. Nikishin, I. V. Popov, A. P. Favorskii, “Raznostnye skhemy trekhmernoi gazovoi dinamiki dlya zadachi o razvitii neustoichivosti Rikhtmaiera-Meshkova”, Matematicheskoe modelirovanie, 7:5 (1995), 15 – 25 | MR | Zbl

[11] Mukhina T.N., Barabanov N.L., Babash S.E. i dr., Piroliz uglevodorodnogo syrya, Khimiya, M., 1987, 240 pp.