Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2016_18_3_a5, author = {P. A. Shamanaev and B. V. Loginov}, title = {The branching of periodic solutions of inhomogeneous linear differential equations with a the perturbation in the form of small linear term with delay}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {61--69}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a5/} }
TY - JOUR AU - P. A. Shamanaev AU - B. V. Loginov TI - The branching of periodic solutions of inhomogeneous linear differential equations with a the perturbation in the form of small linear term with delay JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2016 SP - 61 EP - 69 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a5/ LA - ru ID - SVMO_2016_18_3_a5 ER -
%0 Journal Article %A P. A. Shamanaev %A B. V. Loginov %T The branching of periodic solutions of inhomogeneous linear differential equations with a the perturbation in the form of small linear term with delay %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2016 %P 61-69 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a5/ %G ru %F SVMO_2016_18_3_a5
P. A. Shamanaev; B. V. Loginov. The branching of periodic solutions of inhomogeneous linear differential equations with a the perturbation in the form of small linear term with delay. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 61-69. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a5/
[1] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, “Nauka”, M., 1969, 528 pp. | MR
[2] Trenogin V. A., “Periodicheskie resheniya i resheniya tipa perekhoda abstraktnykh uravnenii reaktsii-diffuzii”, Voprosy kachestvennoi teorii differentsialnykh uravnenii, “Nauka”, SOAN SSSR, Novosibirsk, 1988, 133-140
[3] Kyashkin A. A., Loginov B. V., Shamanaev P. A., “Kommentarii k zadacham o vozmuscheniyakh lineinogo uravneniya malym lineinym slagaemym i spektralnykh kharakteristik fredgolmova operatora”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 15:3 (2013), 100-107 | Zbl
[4] Kyashkin A. A., Loginov B. V., Shamanaev P. A., “Kommentarii k zadache o vetvlenii periodicheskikh reshenii pri bifurkatsii Andronova-Khopfa v differentsialnykh uravneniyakh s vyrozhdennym operatorom pri proizvodnoi”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 16:4 (2014), 33-40 | Zbl
[5] Kyashkin A. A., Loginov B. V., Shamanaev P. A., “O vetvlenii periodicheskikh reshenii lineinykh neodnorodnykh differentsialnykh uravnenii c vozmuscheniem v vide malogo lineinogo slagaemogo”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 18:3 (2016), 45-53 | MR | Zbl
[6] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, Editorial URSS, M., 2004, 496 pp.
[7] Loginov B. V., Rusak Yu. B., “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, sb. n. rabot, ed. M. S. Salakhitdinov, Izd-vo “Fan” AN Uzb.SSR, Tashkent, 1978, 133-148 | MR
[8] Rusak Yu. B., Obobschennaya zhordanova struktura v teorii vetvleniya, dis. ... kand. fiz.-mat. nauk, Inst. matematiki im. V. M. Romanovskogo AN Uzb.SSR, Tashkent, 1979, 126 pp.
[9] Rusak Yu. B., “Obobschennaya zhordanova struktura analiticheskoi operator-funktsii i sopryazhennoi k nei”, Izvestiya Akad. Nauk Uzb.SSR, fiz-mat., 1978, no. 2, 15-19 | Zbl
[10] Loginov B. V., Rousak Yu. B., “Generalized Jordan structure in the problem of the stability of bifurcating solutions”, Nonlinear Analysis: TMA, 17:3 (1991), 219-232 | DOI | MR | Zbl
[11] Loginov B. V., “Determination of the branching equation by its group symmetry - Andronov-Hopf bifurcation”, Nonlinear Analysis: TMA, 28:12 (1997), 2035-2047 | DOI | MR
[12] Loginov B. V., Kim-Tyan L. R., Rousak Yu.B., “On the stability of periodic solutions for differential equations with a Fredholm operator at the highest derivative”, Nonlinear analysis, 67:5 (2007), 1570-1585 | DOI | MR | Zbl
[13] Konopleva I.V., Loginov B.V., Rusak Yu.B., “Simmetriya i potentsialnost uravnenii razvetvleniya v kornevykh podprostranstvakh v neyavno zadannykh statsionarnykh i dinamicheskikh bifurkatsionnykh zadachakh”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Estestvennye nauki, 2009, 115-124