The branching of periodic solutions of inhomogeneous linear differential equations with a the perturbation in the form of small linear term with delay
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 61-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Banach space by branching theory methods existence and uniqueness of periodic solutions of inhomogeneous linear differential equations with degenerate or identity operator in the derivative and a perturbation in the form of small linear term with delay is proved. The article shows that the periodic solution has a pole at the point $ \varepsilon = 0 $ , and if $ \varepsilon = 0 $ it goes to $2n$–parameter set of periodic solutions. The result is obtained by applying the theory of generalized Jordan sets, that reduces the original problem to the investigation of the Lyapunov-Schmidt resolution system in the root subspace. This resolution system is a non-homogeneous system of linear algebraic equations, which at $ \varepsilon \neq 0 $ has a unique solution, and at a value of $ \varepsilon = 0 $ goes to $2n$-parameter family of solutions.
Keywords: branching of periodic solution, differential equations with delay, generalized Jordan sets, Lyapunov-Schmidt resolution system in the root subspace.
@article{SVMO_2016_18_3_a5,
     author = {P. A. Shamanaev and B. V. Loginov},
     title = {The branching of periodic solutions of inhomogeneous linear differential equations with a the perturbation in the form of small linear term with delay},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {61--69},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a5/}
}
TY  - JOUR
AU  - P. A. Shamanaev
AU  - B. V. Loginov
TI  - The branching of periodic solutions of inhomogeneous linear differential equations with a the perturbation in the form of small linear term with delay
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 61
EP  - 69
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a5/
LA  - ru
ID  - SVMO_2016_18_3_a5
ER  - 
%0 Journal Article
%A P. A. Shamanaev
%A B. V. Loginov
%T The branching of periodic solutions of inhomogeneous linear differential equations with a the perturbation in the form of small linear term with delay
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 61-69
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a5/
%G ru
%F SVMO_2016_18_3_a5
P. A. Shamanaev; B. V. Loginov. The branching of periodic solutions of inhomogeneous linear differential equations with a the perturbation in the form of small linear term with delay. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 61-69. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a5/

[1] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, “Nauka”, M., 1969, 528 pp. | MR

[2] Trenogin V. A., “Periodicheskie resheniya i resheniya tipa perekhoda abstraktnykh uravnenii reaktsii-diffuzii”, Voprosy kachestvennoi teorii differentsialnykh uravnenii, “Nauka”, SOAN SSSR, Novosibirsk, 1988, 133-140

[3] Kyashkin A. A., Loginov B. V., Shamanaev P. A., “Kommentarii k zadacham o vozmuscheniyakh lineinogo uravneniya malym lineinym slagaemym i spektralnykh kharakteristik fredgolmova operatora”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 15:3 (2013), 100-107 | Zbl

[4] Kyashkin A. A., Loginov B. V., Shamanaev P. A., “Kommentarii k zadache o vetvlenii periodicheskikh reshenii pri bifurkatsii Andronova-Khopfa v differentsialnykh uravneniyakh s vyrozhdennym operatorom pri proizvodnoi”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 16:4 (2014), 33-40 | Zbl

[5] Kyashkin A. A., Loginov B. V., Shamanaev P. A., “O vetvlenii periodicheskikh reshenii lineinykh neodnorodnykh differentsialnykh uravnenii c vozmuscheniem v vide malogo lineinogo slagaemogo”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 18:3 (2016), 45-53 | MR | Zbl

[6] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, Editorial URSS, M., 2004, 496 pp.

[7] Loginov B. V., Rusak Yu. B., “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, sb. n. rabot, ed. M. S. Salakhitdinov, Izd-vo “Fan” AN Uzb.SSR, Tashkent, 1978, 133-148 | MR

[8] Rusak Yu. B., Obobschennaya zhordanova struktura v teorii vetvleniya, dis. ... kand. fiz.-mat. nauk, Inst. matematiki im. V. M. Romanovskogo AN Uzb.SSR, Tashkent, 1979, 126 pp.

[9] Rusak Yu. B., “Obobschennaya zhordanova struktura analiticheskoi operator-funktsii i sopryazhennoi k nei”, Izvestiya Akad. Nauk Uzb.SSR, fiz-mat., 1978, no. 2, 15-19 | Zbl

[10] Loginov B. V., Rousak Yu. B., “Generalized Jordan structure in the problem of the stability of bifurcating solutions”, Nonlinear Analysis: TMA, 17:3 (1991), 219-232 | DOI | MR | Zbl

[11] Loginov B. V., “Determination of the branching equation by its group symmetry - Andronov-Hopf bifurcation”, Nonlinear Analysis: TMA, 28:12 (1997), 2035-2047 | DOI | MR

[12] Loginov B. V., Kim-Tyan L. R., Rousak Yu.B., “On the stability of periodic solutions for differential equations with a Fredholm operator at the highest derivative”, Nonlinear analysis, 67:5 (2007), 1570-1585 | DOI | MR | Zbl

[13] Konopleva I.V., Loginov B.V., Rusak Yu.B., “Simmetriya i potentsialnost uravnenii razvetvleniya v kornevykh podprostranstvakh v neyavno zadannykh statsionarnykh i dinamicheskikh bifurkatsionnykh zadachakh”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Estestvennye nauki, 2009, 115-124