About destabilization of equilibrium point is caused by linear and quadratic forces of viscous friction
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 49-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Holonomic systems with two degrees of freedom are considered. It is supposed that potential forces, non-conservative positional forces, linear and quadratic dissipative forces act in these systems. The normal form of equations of motion is obtained and averaged in non-resonance case. In particular case when quadratic friction forces act independently along main coordinate axes, averaged system is completely investigated. Unique stationary mode of averaged system is obtained and stability of that mode is investigated. Conditions for the existence of an invariant torus and weak instability of equilibrium position are obtained.
Keywords: Zigler’s effect, non-conservative positional force, linear dissipative force, quadratic dissipative force, Raileigh’s function, normalization method of Hori-Kamel
Mots-clés : invariant torus.
@article{SVMO_2016_18_3_a4,
     author = {A. Yu. Mayorov},
     title = {About destabilization of equilibrium point is caused by linear and quadratic forces of viscous friction},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a4/}
}
TY  - JOUR
AU  - A. Yu. Mayorov
TI  - About destabilization of equilibrium point is caused by linear and quadratic forces of viscous friction
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 49
EP  - 60
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a4/
LA  - ru
ID  - SVMO_2016_18_3_a4
ER  - 
%0 Journal Article
%A A. Yu. Mayorov
%T About destabilization of equilibrium point is caused by linear and quadratic forces of viscous friction
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 49-60
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a4/
%G ru
%F SVMO_2016_18_3_a4
A. Yu. Mayorov. About destabilization of equilibrium point is caused by linear and quadratic forces of viscous friction. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 49-60. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a4/

[1] Kuznetsov S. P., “Dvizhenie padayuschei plastiny v zhidkosti: konechnomernye modeli i fenomeny slozhnoi nelineinoi dinamiki”, Nelineinaya dinamika, 11:1 (2015), 3–49 | MR | Zbl

[2] Kozlov V. V., “K zadache o padenii tyazhelogo tverdogo tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. Matem. Mekhan., 1990, no. 1, 79–86 | Zbl

[3] Shamolin M. V., “Zadacha o dvizhenii tela v soprotivlyayuscheisya srede s uchëtom zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Mat. modelirovanie, 24:10 (2012), 109–132 | MR

[4] Chernousko F. L., Bolotnik N. N., “Mobilnye roboty, upravlyaemye dvizheniem vnutrennikh tel”, Tr. IMM UrO RAN, 16, no. 5, 2010, 213–222

[5] Chernousko F. L., “Optimalnoe peremeschenie mnogozvennoi sistemy v srede s soprotivleniem”, Tr. IMM UrO RAN, 17, no. 2, 2011, 240–255 | MR

[6] Ziegler H., “Die Stabilit$\ddot{\textrm{a}}$tskriteriien der Elastomchanik”, lng. Arch, 20:1 (1952), 49–56 | MR | Zbl

[7] Tsigler G., Osnovy teorii ustoichivosti konstruktsii, Mir, M., 1971, 192 pp.

[8] Baikov A. E., Krasilnikov P. S., “Ob effekte Tsiglera v nekonservativnoi mekhanicheskoi sisteme”, PMM, 74:1 (2010), 74–88 | MR

[9] Maiorov A. Yu., Baikov A. Yu., “Ob ustoichivosti polozheniya ravnovesiya diskretnoi modeli zapravochnogo shlanga pod deistviem reaktivnoi sily”, Nelineinaya dinamika, 11:1 (2015), 127–146 | MR | Zbl

[10] Krasilnikov P. S., Amelin R. N., “Ob effekte destabilizatsii ravnovesiya nekonservativnoi sistemy s tremya stepenyami svobody”, Vestnik MAI, 20:4 (2013), 191–197

[11] Baikov A. E., “Predelnyi tsikl v nekonservativnoi sisteme pri rezonanse 1:2”, PMM, 75:3 (2011), 384–395 | MR | Zbl

[12] Lure A. I., Analiticheskaya mekhanika, Fizmatgiz, M., 1961, 824 pp. | MR

[13] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 407 pp. | MR

[14] Krasilnikov P. S., Prikladnye metody issledovaniya nelineinykh kolebanii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2015, 528 pp.

[15] B. van der Pol, “On relaxation oscillations”, Philos. Mag., 2 (1926), 978–992 | DOI | Zbl

[16] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[17] A. A. Kamel, “Perturbation Method in the Theory of Nonlinear Oscillations”, Celestial Mechanics, 3 (1970), 90–106 | DOI | MR | Zbl

[18] Naife A. Kh., Metody vozmuschenii, Mir, M., 1976, 454 pp. | MR

[19] Merkin A. R., Vvedenie v teoriyu ustoichivosti dvizheniya, Nauka, M., 1976, 319 pp. | MR

[20] Blekhman I. I., Vibratsionnaya mekhanika, Fizmatlit, M., 1994, 400 pp. | MR