Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2016_18_3_a4, author = {A. Yu. Mayorov}, title = {About destabilization of equilibrium point is caused by linear and quadratic forces of viscous friction}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {49--60}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a4/} }
TY - JOUR AU - A. Yu. Mayorov TI - About destabilization of equilibrium point is caused by linear and quadratic forces of viscous friction JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2016 SP - 49 EP - 60 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a4/ LA - ru ID - SVMO_2016_18_3_a4 ER -
%0 Journal Article %A A. Yu. Mayorov %T About destabilization of equilibrium point is caused by linear and quadratic forces of viscous friction %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2016 %P 49-60 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a4/ %G ru %F SVMO_2016_18_3_a4
A. Yu. Mayorov. About destabilization of equilibrium point is caused by linear and quadratic forces of viscous friction. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 49-60. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a4/
[1] Kuznetsov S. P., “Dvizhenie padayuschei plastiny v zhidkosti: konechnomernye modeli i fenomeny slozhnoi nelineinoi dinamiki”, Nelineinaya dinamika, 11:1 (2015), 3–49 | MR | Zbl
[2] Kozlov V. V., “K zadache o padenii tyazhelogo tverdogo tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. Matem. Mekhan., 1990, no. 1, 79–86 | Zbl
[3] Shamolin M. V., “Zadacha o dvizhenii tela v soprotivlyayuscheisya srede s uchëtom zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Mat. modelirovanie, 24:10 (2012), 109–132 | MR
[4] Chernousko F. L., Bolotnik N. N., “Mobilnye roboty, upravlyaemye dvizheniem vnutrennikh tel”, Tr. IMM UrO RAN, 16, no. 5, 2010, 213–222
[5] Chernousko F. L., “Optimalnoe peremeschenie mnogozvennoi sistemy v srede s soprotivleniem”, Tr. IMM UrO RAN, 17, no. 2, 2011, 240–255 | MR
[6] Ziegler H., “Die Stabilit$\ddot{\textrm{a}}$tskriteriien der Elastomchanik”, lng. Arch, 20:1 (1952), 49–56 | MR | Zbl
[7] Tsigler G., Osnovy teorii ustoichivosti konstruktsii, Mir, M., 1971, 192 pp.
[8] Baikov A. E., Krasilnikov P. S., “Ob effekte Tsiglera v nekonservativnoi mekhanicheskoi sisteme”, PMM, 74:1 (2010), 74–88 | MR
[9] Maiorov A. Yu., Baikov A. Yu., “Ob ustoichivosti polozheniya ravnovesiya diskretnoi modeli zapravochnogo shlanga pod deistviem reaktivnoi sily”, Nelineinaya dinamika, 11:1 (2015), 127–146 | MR | Zbl
[10] Krasilnikov P. S., Amelin R. N., “Ob effekte destabilizatsii ravnovesiya nekonservativnoi sistemy s tremya stepenyami svobody”, Vestnik MAI, 20:4 (2013), 191–197
[11] Baikov A. E., “Predelnyi tsikl v nekonservativnoi sisteme pri rezonanse 1:2”, PMM, 75:3 (2011), 384–395 | MR | Zbl
[12] Lure A. I., Analiticheskaya mekhanika, Fizmatgiz, M., 1961, 824 pp. | MR
[13] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 407 pp. | MR
[14] Krasilnikov P. S., Prikladnye metody issledovaniya nelineinykh kolebanii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2015, 528 pp.
[15] B. van der Pol, “On relaxation oscillations”, Philos. Mag., 2 (1926), 978–992 | DOI | Zbl
[16] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.
[17] A. A. Kamel, “Perturbation Method in the Theory of Nonlinear Oscillations”, Celestial Mechanics, 3 (1970), 90–106 | DOI | MR | Zbl
[18] Naife A. Kh., Metody vozmuschenii, Mir, M., 1976, 454 pp. | MR
[19] Merkin A. R., Vvedenie v teoriyu ustoichivosti dvizheniya, Nauka, M., 1976, 319 pp. | MR
[20] Blekhman I. I., Vibratsionnaya mekhanika, Fizmatlit, M., 1994, 400 pp. | MR