Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2016_18_3_a3, author = {V. E. Kruglov and O. V. Pochinka}, title = {Graph topological equivalence criterion for $\Omega$-stable flows on surfaces}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {41--48}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a3/} }
TY - JOUR AU - V. E. Kruglov AU - O. V. Pochinka TI - Graph topological equivalence criterion for $\Omega$-stable flows on surfaces JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2016 SP - 41 EP - 48 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a3/ LA - ru ID - SVMO_2016_18_3_a3 ER -
%0 Journal Article %A V. E. Kruglov %A O. V. Pochinka %T Graph topological equivalence criterion for $\Omega$-stable flows on surfaces %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2016 %P 41-48 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a3/ %G ru %F SVMO_2016_18_3_a3
V. E. Kruglov; O. V. Pochinka. Graph topological equivalence criterion for $\Omega$-stable flows on surfaces. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 41-48. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a3/
[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Doklady Akademii nauk SSSR, 14:5 (1937), 247-250
[2] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2(272) (1990), 49-77 | MR
[3] Kruglov V. E., Malyshev D. S., Pochinka O. V., “Grafovyi kriterii topologicheskoi ekvivalentnosti $\Omega$-ustoichivykh potokov bez periodicheskikh traektorii na poverkhnostyakh i effektivnyi algoritm dlya ego primeneniya”, Zhurnal SVMO, 18:2 (2016), 47-58 | Zbl
[4] Kruglov V. E., Mitryakova T. M., Pochinka O. V., “O tipakh yacheek Omega-ustoichivykh potokov bez periodicheskikh traektorii na poverkhnostyakh”, Dinamicheskie sistemy, 5(33):1-2 (2015), 43-49 | Zbl
[5] Leontovich E. A., Maier A. G., “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, Dokl. Akad. AN SSSR, 14:5 (1937), 251-257
[6] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, Dokl. Akad. AN SSSR, 103:4 (1955), 557-560
[7] Maier A. G., “Grubye preobrazovaniya okruzhnosti”, Uch. Zap. GGU, 12 (1939), 215-229
[8] Neumann D., O'Brien T., “Global structure of continuous flows on 2-manifolds”, J. DifF. Eq., 22:1 (1976), 89-110 | DOI | MR | Zbl
[9] Oshemkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Matem. sb., 189:8 (1998), 93-140 | DOI | MR | Zbl
[10] Peixoto M., “On the classification of flows on two manifolds”, Dynamical systems, Proc. Symp. (Univ. of Bahia, Salvador, Brasil), 1971 | MR | Zbl
[11] Pugh C., Shub M., “$\Omega$-stability for flows”, Inven. Math, 11 (1970), 150-158 | DOI | MR | Zbl