Graph topological equivalence criterion for $\Omega$-stable flows on surfaces
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 41-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Study of flow dynamics on surfaces by dividing a phase space into cells with the same limit behavior of trajectories within the cell goes back to the classical works of A.A. Andronov, L.S. Pontryagin, E.A. Leontovich and A.G. Mayer. Types of cells (which are finite in number) and their adjacency to each other fully determine the class of topological equivalence of a flow with finite number of singular trajectories. If we select one trajectory in each cell of the rough stream without periodic orbits, the cells break up into so-called triangular regions which have the same single type. Combinatorial description of such a partition leads to three-colored graph of A.A. Oshemkov and V.V. Sharko; the vertices of that graph correspond to the triangular areas and edges correspond to separatrices that link them. These scientists demonstrated that two such flowsare topologically equivalent if and only if their three-colored graphs are isomorphic. In the same paper they gave full topological classification of the Morse-Smale flows in terms of atoms and molecules. In present paper the dynamics of $\Omega$-stable flows on surfaces is described with help of special oriented graphs and four-colored graphs.
Keywords: multicolored graph, topological invariant, $\Omega$-stable flow.
@article{SVMO_2016_18_3_a3,
     author = {V. E. Kruglov and O. V. Pochinka},
     title = {Graph topological equivalence criterion for $\Omega$-stable flows on surfaces},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a3/}
}
TY  - JOUR
AU  - V. E. Kruglov
AU  - O. V. Pochinka
TI  - Graph topological equivalence criterion for $\Omega$-stable flows on surfaces
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 41
EP  - 48
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a3/
LA  - ru
ID  - SVMO_2016_18_3_a3
ER  - 
%0 Journal Article
%A V. E. Kruglov
%A O. V. Pochinka
%T Graph topological equivalence criterion for $\Omega$-stable flows on surfaces
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 41-48
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a3/
%G ru
%F SVMO_2016_18_3_a3
V. E. Kruglov; O. V. Pochinka. Graph topological equivalence criterion for $\Omega$-stable flows on surfaces. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 41-48. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a3/

[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Doklady Akademii nauk SSSR, 14:5 (1937), 247-250

[2] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2(272) (1990), 49-77 | MR

[3] Kruglov V. E., Malyshev D. S., Pochinka O. V., “Grafovyi kriterii topologicheskoi ekvivalentnosti $\Omega$-ustoichivykh potokov bez periodicheskikh traektorii na poverkhnostyakh i effektivnyi algoritm dlya ego primeneniya”, Zhurnal SVMO, 18:2 (2016), 47-58 | Zbl

[4] Kruglov V. E., Mitryakova T. M., Pochinka O. V., “O tipakh yacheek Omega-ustoichivykh potokov bez periodicheskikh traektorii na poverkhnostyakh”, Dinamicheskie sistemy, 5(33):1-2 (2015), 43-49 | Zbl

[5] Leontovich E. A., Maier A. G., “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, Dokl. Akad. AN SSSR, 14:5 (1937), 251-257

[6] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, Dokl. Akad. AN SSSR, 103:4 (1955), 557-560

[7] Maier A. G., “Grubye preobrazovaniya okruzhnosti”, Uch. Zap. GGU, 12 (1939), 215-229

[8] Neumann D., O'Brien T., “Global structure of continuous flows on 2-manifolds”, J. DifF. Eq., 22:1 (1976), 89-110 | DOI | MR | Zbl

[9] Oshemkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Matem. sb., 189:8 (1998), 93-140 | DOI | MR | Zbl

[10] Peixoto M., “On the classification of flows on two manifolds”, Dynamical systems, Proc. Symp. (Univ. of Bahia, Salvador, Brasil), 1971 | MR | Zbl

[11] Pugh C., Shub M., “$\Omega$-stability for flows”, Inven. Math, 11 (1970), 150-158 | DOI | MR | Zbl