Straightforward expansion of non-autonomous integrals for quasi-conservative systems with one degree of freedom
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 32-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quasi-conservative stationary systems with one degree of freedom are considered. Straightforward expansion of non-autonomous integrals for quasi-conservative systems is studied and analyticity of such integrals by small parameter is discussed. Method for constructing a set of non-autonomous integrals for quasi-conservative systems in action-angle variables is proposed. Criterion of closed orbits’ existence is obtained in terms of non-autonomous integrals. This criterion is used to estimate the number of limit cycles for one class of Lienard's equation.
Keywords: quasiconservative system, nonautonomous integral, periodic solutions, small-parameter expansion.
Mots-clés : limit cycles, action-angle variables
@article{SVMO_2016_18_3_a2,
     author = {N. V. Kovalev},
     title = {Straightforward expansion of non-autonomous integrals for quasi-conservative systems with one degree of freedom},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {32--40},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a2/}
}
TY  - JOUR
AU  - N. V. Kovalev
TI  - Straightforward expansion of non-autonomous integrals for quasi-conservative systems with one degree of freedom
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 32
EP  - 40
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a2/
LA  - ru
ID  - SVMO_2016_18_3_a2
ER  - 
%0 Journal Article
%A N. V. Kovalev
%T Straightforward expansion of non-autonomous integrals for quasi-conservative systems with one degree of freedom
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 32-40
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a2/
%G ru
%F SVMO_2016_18_3_a2
N. V. Kovalev. Straightforward expansion of non-autonomous integrals for quasi-conservative systems with one degree of freedom. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 32-40. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a2/

[1] A. Kh. Naife, Metody vozmuschenii, Mir, M., 1976, 456 pp. | MR

[2] L. Bobisud, “On The Single First-Order Partial Differential Equation With A Small Parameter”, SIAM Review, 8:4 (1966), 479–-493 | DOI | MR | Zbl

[3] A. Puankare, Izbrannye trudy v trëkh tomakh, v. 1, Novye metody nebesnoi mekhaniki, Nauka, M., 1971, 772 pp. | MR

[4] A. Lienard, “Etudes des oscillations entretenues”, Revue generale de l’Electricite, 23 (1928), 901–-912, 946–-954