Identification and informativity of models for quantitative analysis of multicomponent mixtures
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 153-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

The products of radical polymerization in presence of fullerene can contain a wide variety of compounds depending on the monomer’s degree of conversion. Among them free fullerene, some products of its tailing and macromolecules may exist. Therefore, quantitative determination of the mixture’s composition resulting from chemical reactions of fullerene $C_{60}$, is a rather complicated problem. One approach involves determining concentrations of fullerene and its derivatives in a mixture on the basis of Firord equations’ system. These equations are written for the optical densities of the solution at the wavelengths that characterize the absorption maximums. The direct solution of such system may lead to conflicting results due to the fact that some concentrations may be negative. In addition, problems may arise related to errors in the experimental data of the extinction coefficients. The paper presents a method for the determination of component concentrations in mixtures of fullerene based on UV spectrometric data analysis that mitigates the above mentioned problems. The methodological basis of the approach was formed by the linear programming. It permitted to use the theory of duality to analyze the models’ information capability. The approbation results of this method for the model mixture of fullerene components and polystyrene are presented. Obtained results match requirements for the concentrations of mixture components, and are characterized by high accuracy.
Keywords: multicomponent mixture, measurement error, models’ information capability.
Mots-clés : molar concentration, maximum permissible error
@article{SVMO_2016_18_3_a15,
     author = {S. I. Spivak and O. G. Kantor and D. S. Yunusova},
     title = {Identification and informativity of models for quantitative analysis of multicomponent mixtures},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {153--163},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a15/}
}
TY  - JOUR
AU  - S. I. Spivak
AU  - O. G. Kantor
AU  - D. S. Yunusova
TI  - Identification and informativity of models for quantitative analysis of multicomponent mixtures
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 153
EP  - 163
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a15/
LA  - ru
ID  - SVMO_2016_18_3_a15
ER  - 
%0 Journal Article
%A S. I. Spivak
%A O. G. Kantor
%A D. S. Yunusova
%T Identification and informativity of models for quantitative analysis of multicomponent mixtures
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 153-163
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a15/
%G ru
%F SVMO_2016_18_3_a15
S. I. Spivak; O. G. Kantor; D. S. Yunusova. Identification and informativity of models for quantitative analysis of multicomponent mixtures. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 153-163. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a15/

[1] I. Ya. Bershtein, Yu. A. Kaminskii, Spektrofotometrcheskii analiz v organicheskoi khimii, Khimiya, L., 1986, 200 pp.

[2] Yu. N. Biglova, V. A. Kraikin, V. V. Mikheev, S. A. Torosyan, S. V. Kolesov, A. G. Mustafin, M. S. Miftakhov,, “Kolichestvennoe opredelenie metodom UF spektroskopii proizvodnykh metanofullerenov s razlichnoi stepenyu zamescheniyai”, Zhurnal strukturnoi khimii, 54:4 (2013), 674–678

[3] Yu. N. Biglova, V. A. Kraikin, S. A. Torosyan, S. V. Kolesov, M. S. Miftakhov, V. V. Mikheev, A. G. Mustafin, “UF-spektroskopiya proizvodnykh metanofullerenov s razlichnoi stepenyu zamescheniya”, Zhurnal fizicheskoi khimii, 87:10 (2013), 1705–1708 | DOI

[4] L. V. Kantorovich, “O nekotorykh novykh podkhodakh k vychislitelnym metodam i obrabotke nablyudenii”, Sibirskii matematicheskii zhurnal, 3:5 (1962), 701–709

[5] S. I. Kuznetsov, D. S. Yunusova, R. Kh. Yumagulova, M. S. Miftakhov, S. V. Kolesov, S. I. Spivak, O. G. Kantor, “O nekotorykh novykh podkhodakh k vychislitelnym metodam i obrabotke nablyudenii”, Zhurnal prikladnoi spektroskopii, 4 (2015), 608–615

[6] S. I. Spivak, A. S. Ismagilova, O. G. Kantor, “Oblasti neopredelennosti v matematicheskoi teorii analiza izmerenii”, Sistemy upravleniya i informatsionnye tekhnologii, 58:4 (2014), 17–21

[7] S. I. Spivak, O. G. Kantor, D. S. Yunusova, S. I. Kuznetsov, S. V. Kolesov, “Otsenka pogreshnosti i znachimosti izmerenii dlya lineinykh modelei”, Informatika i ee primeneniya, 9:1 (2015), 90–100 | MR

[8] S. I. Spivak, O. G. Kantor, D. S. Yunusova, S. I. Kuznetsov, S. V. Kolesov, “Predelno dopustimye otsenki rascheta parametrov fiziko-khimicheskikh modelei”, Doklady Akademii nauk, 464:4 (2015), 437–439 | DOI

[9] S. I. Spivak, O. G. Kantor, D. S. Yunusova, “Predelno-dopustimye otsenki parametrov fiziko-khimicheskikh modelei”, Bashkirskii khimicheskii zhurnal, 3 (2015), 12–17

[10] R. Kh. Yumagulova, Yu. N. Biglova, S. V. Kolesov, Yu. B. Monakov, “O radikalnoi (so)polimerizatsii allilmetakrilata v prisutstvii fullerena S60”, Doklady Akademii nauk, 48:5 (2006), 625–626