On Modeling the controlled mechanical systems with digital controllers
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 107-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Synthesis of discrete-time control which solves the problem of stabilization of holonomic mechanical systems’ program motion is considered. Such systems are described by Lagrange equations of the second kind. Digital control signals are used in computer-containing control systems for continuous processes. Development of models for such controlled processes leads to investigation of continuous-discrete systems with state described by a continuous function and discrete control functions. This paper proposes an approach for constructing of controller taking into account non-linearity of the system and non-stationarity of program motion. By means of Lyapunov vector function and the comparison system sufficient conditions of given program motion’s stabilization are obtained. A feature of the article is in solving of the problem by use of Lyapunov vector function with components that explicitly depend on time, and are nonlinear with respect to the generalized coordinates. It allows to solve the stabilization problem in general having the possibility to select the most suitable control parameters for each particular system.
Keywords: stabilization, control, discrete-time control, synthesis of control for mechanical systems, Lyapunov vector-function, comparison systems, nonstationary nonlinear dynamical systems.
@article{SVMO_2016_18_3_a10,
     author = {A. S. Andreev and K. A. Kudashova},
     title = {On {Modeling}  the controlled mechanical systems with digital controllers},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {107--116},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a10/}
}
TY  - JOUR
AU  - A. S. Andreev
AU  - K. A. Kudashova
TI  - On Modeling  the controlled mechanical systems with digital controllers
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 107
EP  - 116
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a10/
LA  - ru
ID  - SVMO_2016_18_3_a10
ER  - 
%0 Journal Article
%A A. S. Andreev
%A K. A. Kudashova
%T On Modeling  the controlled mechanical systems with digital controllers
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 107-116
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a10/
%G ru
%F SVMO_2016_18_3_a10
A. S. Andreev; K. A. Kudashova. On Modeling  the controlled mechanical systems with digital controllers. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 107-116. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a10/

[1] D. Nesic, A. Teel, and P. Kokotovirc, “Sufficient conditions for stabilization of sampleddata nonlinear systems via discrete-time approximations”, Syst. Contr. Lett., 38 (1999), 259–270 | DOI | MR | Zbl

[2] D. Laila, Design and analysis of nonlinear sampled-data control systems, PhD thesis, University of Melbourne, 2003

[3] D. Nesic, and A. Teel, “A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models”, IEEE Trans. Automat. Contr., 49 (2004), 1103–1122 | DOI | MR | Zbl

[4] D. Laila, D. Nesic, and A. Teel, “Open and closed loop dissipation inequalities under sampling and controller emulation”, Europ. J. Contr., 2002, no. 8, 109–125 | DOI | Zbl

[5] A. P. Markeev, Teoreticheskaya mekhanika, CheRo, M., 1999, 569 pp. | MR

[6] A. S. Andreev, O. A. Peregudova, “O stabilizatsii programmnykh dvizhenii golonomnoi mekhanicheskoi sistemy”, XII Vserossiiskoe soveschanie po problemam upravleniya VSPU-2014 (Institut problem upravleniya im. V. A. Trapeznikova RAN, 2014), 1840–1843

[7] A. S. Andreev, O. A. Peregudova, “O stabilizatsii programmnykh dvizhenii golonomnoi mekhanicheskoi sistemy”, Avtomatika i telemekhanika, 2016, no. 3, 66-80 | MR | Zbl

[8] F. L. Chernousko, I. M. Ananevskii, S. A. Reshmin, Metody upravleniya nelineinymi mekhanicheskimi sistemami, Fizmatlit, M., 2006, 326 pp.

[9] A. S. Andreev, E. A. Kudashova, O. A. Peregudova,, “O modelirovanii tsifrovogo regulyatora na osnove pryamogo metoda Lyapunova”, Nauchno-tekhnicheskii vestnik Povolzhya, 2015, no. 6, 113-115

[10] O. A. Peregudova, E. A. Kudashova, “Metod vektornykh funktsii Lyapunova v zadache ob asimptoticheskoi ustoichivosti raznostnykh sistem”, Nauchno-tekhnicheskii vestnik Povolzhya, 2015, no. 1, 118-120