Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2016_18_3_a1, author = {D. V. Gribanov and D. S. Malyshev}, title = {The complexity of some graph problems with bounded minors of their constraint matrices}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {19--31}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a1/} }
TY - JOUR AU - D. V. Gribanov AU - D. S. Malyshev TI - The complexity of some graph problems with bounded minors of their constraint matrices JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2016 SP - 19 EP - 31 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a1/ LA - ru ID - SVMO_2016_18_3_a1 ER -
%0 Journal Article %A D. V. Gribanov %A D. S. Malyshev %T The complexity of some graph problems with bounded minors of their constraint matrices %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2016 %P 19-31 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a1/ %G ru %F SVMO_2016_18_3_a1
D. V. Gribanov; D. S. Malyshev. The complexity of some graph problems with bounded minors of their constraint matrices. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 19-31. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a1/
[1] V. E. Alekseev, D. V. Zakharova, “Independent sets in the graphs with bounded minors of the extended incidence matrix”, Journal of Applied and Industrial Mathematics, 5:1 (2011), 14–18 | DOI | MR
[2] S. Arnborg, A. Proskurowski, “Linear time algorithms for NP-hard problems restricted to partial $k$-trees”, Discrete Applied Mathematics, 23:1 (1989), 11–-24 | DOI | MR | Zbl
[3] S. Artmann, F. Eisenbrand, C. Glanzer, T. Oertel, S. Vempala, R. Weismantel, A note on non-degenerate integer programs with small sub-determinants, arXiv: 1603.09595v1 | MR
[4] R. Boliac, V. Lozin, “On the clique-width of graphs in hereditary classes”, Lecture Notes in Computer Science, 2518, 2002, 44–54 | DOI | MR | Zbl
[5] A. Brandstädt, F. F. Dragan, “On linear and circular structure of (claw, net)-free graphs”, Discrete Applied Mathematics, 129:2–3 (2003), 285–303 | DOI | MR | Zbl
[6] B. Courcelle, J. Makowsky, U. Rotics, “Linear time solvable optimization problems on graphs of bounded clique-width”, Theory of Computing Systems, 33:2 (2000), 125–150 | DOI | MR | Zbl
[7] R. M. Gray, “Toeplitz and circulant matrices: a review”, Foundations and Trends in Communications and Information Theory, 2:3 (2006), 155–239 | DOI
[8] N. Karmarkar, “A new polynomial time algorithm for linear programming”, Combinatorica, 4:4 (1984), 373–395 | DOI | MR | Zbl
[9] L. G. Khachiyan, “Polynomial algorithms in linear programming”, USSR Computational Mathematics and Mathematical Physics, 20:1 (1980), 53–72 | DOI | MR | Zbl
[10] D. Kobler, U. Rotics, “Edge dominating set and colorings on graphs with fixed clique-width”, Discrete Applied Mathematics, 126:2–3 (2003), 197–221 | DOI | MR | Zbl
[11] Y. E. Nesterov, A. S. Nemirovsky, Interior point polynomial methods in convex programming, SIAM, 1994 | MR
[12] P. M. Pardalos, C. G. Han, Y. Ye, “Interior point algorithms for solving nonlinear optimization problems”, COAL Newsletter, 19 (1991), 45–54
[13] B. Reed, “Mangoes and Blueberries”, Combinatorica, 19:2 (1999), 267–296 | DOI | MR | Zbl
[14] V. N. Shevchenko, Qualitative topics in integer linear, AMS, 1997 | MR
[15] S. I. Veselov, A. J. Chirkov, “Integer program with bimodular matrix”, Discrete Optimization, 6:2 (2009), 220–222 | DOI | MR | Zbl
[16] S. H. Whitesides, “A method for solving certain graph recognition and optimization problems, with applications to perfect graphs.”, Annals of Discrete Mathematics, 88 (1984), 281–297 | MR