Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2016_18_3_a0, author = {A. S. Andreev and O. A. Peregudova and S. Y. Rakov}, title = {On {Modeling} a nonlinear integral regulator on the base of the {Volterra} equations}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {8--18}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a0/} }
TY - JOUR AU - A. S. Andreev AU - O. A. Peregudova AU - S. Y. Rakov TI - On Modeling a nonlinear integral regulator on the base of the Volterra equations JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2016 SP - 8 EP - 18 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a0/ LA - ru ID - SVMO_2016_18_3_a0 ER -
%0 Journal Article %A A. S. Andreev %A O. A. Peregudova %A S. Y. Rakov %T On Modeling a nonlinear integral regulator on the base of the Volterra equations %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2016 %P 8-18 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a0/ %G ru %F SVMO_2016_18_3_a0
A. S. Andreev; O. A. Peregudova; S. Y. Rakov. On Modeling a nonlinear integral regulator on the base of the Volterra equations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 3, pp. 8-18. http://geodesic.mathdoc.fr/item/SVMO_2016_18_3_a0/
[1] H. Berghuis, H. Nijmeijer, “Global regulation of robots using only position measurements”, Systems and Contr. Letters, 21 (1993), 289-293 | DOI | MR | Zbl
[2] Burkov I.V., “Stabilizatsiya naturalnoi mekhanicheskoi sistemy bez izmereniya ee skorostei s prilozheniem k upravleniyu tverdym telom”, Prikladnaya matematika i mekhanika, 62:6 (1998), 923-933 | MR
[3] Burkov I.V., “Stabilization of position of uniform motion of mechanical systems via bounded control and without velocity measurements”, 3-rd IEEE Multi-conference on Systems and Control. (St. Petersburg), 2009, 400-405
[4] I. M. Ananevskii, V. B. Kolmanovskii, “O stabilizatsii nekotorykh reguliruemykh sistem s posledeistviem”, Avtomatika i telemekhanika, 1989, no. 9, 34-42 | MR
[5] A. S. Andreev, Ustoichivost neavtonomnykh funktsionalno-differentsialnykh uravnenii: monografiya, Izd-vo Ul-GU, Ulyanovsk, 2005, 328 pp.
[6] A. S. Andreev, “Metod funktsionalov Lyapunova v zadache ob ustoichivosti funktsionalno-differentsialnykh uravnenii”, Avtomatika i telemekhanika, 2009, no. 9, 4-55 | Zbl
[7] A. S. Andreev, V. V. Blagodatnov, A.R. Kilmetova, “Uravneniya Volterra v modelirovanii PI- i PID-regulyatorov”, Nauchno-tekhnicheskii vestnik Povolzhya, 2013, no. 1, 84-90 | MR
[8] A. S. Andreev, S. Yu. Rakov, “Ob upravlenii dvukhzvennym robotom-manipulyatorom na osnove PI-regulyatora”, Avtomatizatsiya protsessov upravleniya, 2015, no. 3(41), 69-72
[9] A. S. Andreev, O. A. Peregudova, “Sintez upravleniya dvukhzvennym manipulyatorom bez izmereniya skorostei”, Avtomatizatsiya protsessov upravleniya, 2015, no. 4(42), 81-89
[10] F. L. Chernousko, I. M. Ananevskii, S. A. Reshmin, Metody upravleniya nelineinymi mekhanicheskimi sistemami, Fizmatlit, M., 2006, 326 pp.