Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2016_18_2_a6, author = {V. E. Kruglov and D. S. Malyshev and O. V. Pochinka}, title = {The graph criterion for the topological equivalence of $\Omega $~--~stable flows without periodic trajectories on surfaces and efficient algorithm for its application}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {47--58}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a6/} }
TY - JOUR AU - V. E. Kruglov AU - D. S. Malyshev AU - O. V. Pochinka TI - The graph criterion for the topological equivalence of $\Omega $~--~stable flows without periodic trajectories on surfaces and efficient algorithm for its application JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2016 SP - 47 EP - 58 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a6/ LA - ru ID - SVMO_2016_18_2_a6 ER -
%0 Journal Article %A V. E. Kruglov %A D. S. Malyshev %A O. V. Pochinka %T The graph criterion for the topological equivalence of $\Omega $~--~stable flows without periodic trajectories on surfaces and efficient algorithm for its application %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2016 %P 47-58 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a6/ %G ru %F SVMO_2016_18_2_a6
V. E. Kruglov; D. S. Malyshev; O. V. Pochinka. The graph criterion for the topological equivalence of $\Omega $~--~stable flows without periodic trajectories on surfaces and efficient algorithm for its application. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 47-58. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a6/
[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Doklady Akademii nauk SSSR, 14:5 (1937), 247-250
[2] Cobham A, “The intrinsic computational difficulty of functions”, Proceedings of the 1964 international congress for logic, methodology, and philosophy of science, North-Holland, Amsterdam, 1964, 24-30 | MR
[3] Grines V., Malyshev D., Pochinka O., Zinina S., “Efficient algorithms for the recognition of topologically conjugate gradient-like diffeomorhisms”, Regular and Chaotic Dynamics, 21:2 (2016), 189-203 | DOI | MR | Zbl
[4] Grines V. Z., Kapkaeva S.Kh., Pochinka O. V., “Trekhtsvetnyi graf kak polnyi topologicheskii invariant dlya gradientno-podobnykh diffeomorfizmov poverkhnostei”, Matematicheskii sbornik, 205:10 (2014.), 19-46 | DOI | Zbl
[5] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR
[6] Pochinka O. V., Kruglov V. E., Mitryakova T. M., “O tipakh yacheek Omega-ustoichivykh potokov bez periodicheskikh traektorii na poverkhnostyakh”, Dinamicheskie sistemy, 5(33):1-2 (2015), 43-49 | Zbl
[7] Leontovich E. A., Maier A. G., “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, Dokl. Akad. AN SSSR SSSR, 14:5 (1937), 251-257
[8] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu struktury razbieniya na traektorii”, Dokl. Akad. AN SSSR, 103:4 (1955), 557-560
[9] Maier A. G., “Grubye preobrazovaniya okruzhnosti”, Uch. Zap. GGU, 12 (1939), 215-229
[10] Miller G., “Isomorphism testing for graphs of bounded genus”, Proceedings of the 12th Annual ACM Symposium on Theory of Computing (New York, N.Y.), 1980, 225-235 | MR
[11] Neumann D., O'Brien T., “Global structure of continuous flows on 2-manifolds”, J. DifF. Eq., 22:1 (1976), 89-110 | DOI | MR | Zbl
[12] Oshemkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Matem. sb., 189:8 (1998), 93-140 | DOI | MR | Zbl
[13] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem: Vvedenie, Per. s angl., Mir, M., 1986, 301 pp. | MR
[14] Peixoto M., “On the classification of flows on two manifolds”, Dynamical systems, Proc. Symp. (Univ. of Bahia, Salvador, Brasil), 1971 | MR | Zbl
[15] Pugh C., Shub M., “$\Omega$-stability for flows”, Inven. Math., 11 (1970), 150-158 | DOI | MR | Zbl