The graph criterion for the topological equivalence of $\Omega $~--~stable flows without periodic trajectories on surfaces and efficient algorithm for its application
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 47-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Studying of dynamics of flows on surfaces by dividing a phase space into cells with same limit behavior of trajectories within the cell goes back to the classical works of A.A. Andronov, L.S. Pontryagin, E.A. Leontovich and A.G. Mayer. Types of cells (which are finite in number) and abutting each other fully determine the class of topological equivalence of a flow with finite number of singular trajectories. If in each cell of the rough stream without periodic orbits we select one trajectory, the cells fall into so-called triangular regions which has the same single type. Combinatorial description of such a partition leads to a three-colored graph of A.A. Oshemkov and V.V. Sharko. The vertices of this graph correspond to the triangular areas and edges correspond to those separatrices that link them. A.A. Oshemkov and V.V. Sharko demonstrated that two such flow topologically equivalent if and only if their three-colored graphs are isomorphic and an algorithm of distinction of three-colored graphs is described. However, their algorithm is not effective in terms of graph theory. In this work the dynamics of $ \Omega $ -stable flows without periodic trajectories on surfaces is described in terms of four-colored graphs and effective algorithm of distinction of these graphs is given.
Keywords: multycolored graph, topological invariant, $\Omega$-stable flow, effective algorithm.
@article{SVMO_2016_18_2_a6,
     author = {V. E. Kruglov and D. S. Malyshev and O. V. Pochinka},
     title = {The graph criterion for the topological equivalence of $\Omega $~--~stable flows without periodic trajectories on surfaces and efficient algorithm for its application},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {47--58},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a6/}
}
TY  - JOUR
AU  - V. E. Kruglov
AU  - D. S. Malyshev
AU  - O. V. Pochinka
TI  - The graph criterion for the topological equivalence of $\Omega $~--~stable flows without periodic trajectories on surfaces and efficient algorithm for its application
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 47
EP  - 58
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a6/
LA  - ru
ID  - SVMO_2016_18_2_a6
ER  - 
%0 Journal Article
%A V. E. Kruglov
%A D. S. Malyshev
%A O. V. Pochinka
%T The graph criterion for the topological equivalence of $\Omega $~--~stable flows without periodic trajectories on surfaces and efficient algorithm for its application
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 47-58
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a6/
%G ru
%F SVMO_2016_18_2_a6
V. E. Kruglov; D. S. Malyshev; O. V. Pochinka. The graph criterion for the topological equivalence of $\Omega $~--~stable flows without periodic trajectories on surfaces and efficient algorithm for its application. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 47-58. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a6/

[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Doklady Akademii nauk SSSR, 14:5 (1937), 247-250

[2] Cobham A, “The intrinsic computational difficulty of functions”, Proceedings of the 1964 international congress for logic, methodology, and philosophy of science, North-Holland, Amsterdam, 1964, 24-30 | MR

[3] Grines V., Malyshev D., Pochinka O., Zinina S., “Efficient algorithms for the recognition of topologically conjugate gradient-like diffeomorhisms”, Regular and Chaotic Dynamics, 21:2 (2016), 189-203 | DOI | MR | Zbl

[4] Grines V. Z., Kapkaeva S.Kh., Pochinka O. V., “Trekhtsvetnyi graf kak polnyi topologicheskii invariant dlya gradientno-podobnykh diffeomorfizmov poverkhnostei”, Matematicheskii sbornik, 205:10 (2014.), 19-46 | DOI | Zbl

[5] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR

[6] Pochinka O. V., Kruglov V. E., Mitryakova T. M., “O tipakh yacheek Omega-ustoichivykh potokov bez periodicheskikh traektorii na poverkhnostyakh”, Dinamicheskie sistemy, 5(33):1-2 (2015), 43-49 | Zbl

[7] Leontovich E. A., Maier A. G., “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, Dokl. Akad. AN SSSR SSSR, 14:5 (1937), 251-257

[8] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu struktury razbieniya na traektorii”, Dokl. Akad. AN SSSR, 103:4 (1955), 557-560

[9] Maier A. G., “Grubye preobrazovaniya okruzhnosti”, Uch. Zap. GGU, 12 (1939), 215-229

[10] Miller G., “Isomorphism testing for graphs of bounded genus”, Proceedings of the 12th Annual ACM Symposium on Theory of Computing (New York, N.Y.), 1980, 225-235 | MR

[11] Neumann D., O'Brien T., “Global structure of continuous flows on 2-manifolds”, J. DifF. Eq., 22:1 (1976), 89-110 | DOI | MR | Zbl

[12] Oshemkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Matem. sb., 189:8 (1998), 93-140 | DOI | MR | Zbl

[13] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem: Vvedenie, Per. s angl., Mir, M., 1986, 301 pp. | MR

[14] Peixoto M., “On the classification of flows on two manifolds”, Dynamical systems, Proc. Symp. (Univ. of Bahia, Salvador, Brasil), 1971 | MR | Zbl

[15] Pugh C., Shub M., “$\Omega$-stability for flows”, Inven. Math., 11 (1970), 150-158 | DOI | MR | Zbl