Application of the DG method for solution of inverse problem of medicine diffusion out from the chitosan film
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 94-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work a numerical method based on the discontinuous Galerkin method is proposed to solve the inverse problem of finding the diffusion coefficient using a genetic algorithm. Series of numerical experiments with field data for various calcination temperature of the film with different chitosan drug composition were set.
Mots-clés : diffusion-type equations
Keywords: discontinuous Galerkin method, inverse problem, genetic algorithm.
@article{SVMO_2016_18_2_a11,
     author = {I. M. Gubaydullin and R. V. Zhalnin and V. F. Masyagin and V. F. Tishkin and A. S. Shurshina},
     title = {Application of the {DG} method for solution of inverse problem of medicine diffusion out from the chitosan film},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {94--105},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a11/}
}
TY  - JOUR
AU  - I. M. Gubaydullin
AU  - R. V. Zhalnin
AU  - V. F. Masyagin
AU  - V. F. Tishkin
AU  - A. S. Shurshina
TI  - Application of the DG method for solution of inverse problem of medicine diffusion out from the chitosan film
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 94
EP  - 105
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a11/
LA  - ru
ID  - SVMO_2016_18_2_a11
ER  - 
%0 Journal Article
%A I. M. Gubaydullin
%A R. V. Zhalnin
%A V. F. Masyagin
%A V. F. Tishkin
%A A. S. Shurshina
%T Application of the DG method for solution of inverse problem of medicine diffusion out from the chitosan film
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 94-105
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a11/
%G ru
%F SVMO_2016_18_2_a11
I. M. Gubaydullin; R. V. Zhalnin; V. F. Masyagin; V. F. Tishkin; A. S. Shurshina. Application of the DG method for solution of inverse problem of medicine diffusion out from the chitosan film. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 94-105. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a11/

[1] Harrison K., Introduction to polymeric drug delivery, Woodhead Publishing Limited, Cambridge England, 2007, 33–56

[2] Bajpai A. K., Shukla S. K., Bhanu S., Kankane S., “Responsive polymers in controlled drug delivery”, Progr. Polym. Sei., 33:1 (2008), 1088–1118 | DOI

[3] Jia Ala, Processing of polymer-based systems for improved performance and controlled release, PhD Thesis, 2011, 208 pp. (London)

[4] Vilar G., Tulla-Puche J., Albericio F., “Polymers and drug delivery systems”, Current Drug Delivery, 9:4 (2012), 367–394 | DOI

[5] Uhrich K. E., Cannizzaro S. M., Langer E. S., Shakesheff K. M., “Polymeric systems for controlled drug release”, Chem.Rev., 10:4 (1999), 3181–3198 | DOI

[6] Shaik M. R., Korsapati M., Panati D., “Polymers in controlled drug delivery systems”, Int.J.Pharm.Sei., 2:4 (2012), 112–116

[7] Kumaresh S. Soppimath, Tejraj M. Aminabhavi, Anandrao E. Kulkarni, Walter E. Eudzinski, “Biodegradable polymeric nanoparticles as drug delivery devices”, J. of Controlled Release, 70:1 (2001), 1–20

[8] Kulish E. I., Shurshina A. S., Kolesov S. V., “Osobennosti sorbtsii parov vody khitozanovymi lekarstvennymi plenkami setkakh”, Zhurnal prikladnoi khimii, 86:10 (2013), 1583–1590

[9] Kulish E. I., Shurshina A. S., Kolesov S. V., “Osobennosti transportnykh svoistv lekarstvennykh khitozanovykh plenok”, Vysokomolekulyarnye soedineniya. Seriya A, 56:3 (2014), 282–288 | DOI

[10] Kulish E. I., Shurshina A. S., Kolesov S. V., “Transportnye svoistva plenok khitozan – amikatsin”, Khimicheskaya fizika, 33:8 (2014), 76–84 | DOI

[11] Karamutlinova G. R., Gubaidullin I. M., Koledina K. F, Kulish E. I., Ilibaeva A. K, “Matematicheskoe opisanie protsessa diffuzii v plenke khitozana”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 17:4 (2015), 87–95

[12] Skryabin K. G., Vikhoreva G. A., Varlamov V. P., Khitin i khitozan: Poluchenie, svoistva i primenenie, Nauka, Moskva, 2002, 368 pp.

[13] Gubaidullin I. M., Ryabov V. V., Tikhonova M. V., “Primenenie indeksnogo metoda globalnoi optimizatsii pri reshenii obratnykh zadach khimicheskoi kinetiki”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 12:1 (2011), 137–145 | MR

[14] Emelyanov V. V., Kureichik V. V., Kureichik V. M., Teoriya i praktika evolyutsionnogo modelirovaniya, Fizmatlit, Moskva, 2003, 432 pp.

[15] Cockburn B., Shu C. W., “Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems”, J. Sci. Comp., 3 (2001), 173–261 | DOI | MR | Zbl

[16] Bernardo Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection”, Dominated Problems, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl

[17] Masyagin V. F., Bobreneva Yu. O., Gubaidullin I. M., Zhalnin R. V., “Primenenie razryvnogo metoda Galerkina dlya modelirovaniya temperaturnogo polya v vertikalnoi skvazhine s treschinoi gidrorazryva”, Sistemy upravleniya i informatsionnye tekhnologii, 63:1 (2016), 13–16

[18] Zhalnin R. V., Ladonkina M. E., Masyagin V. F., Tishkin V. F., “Ob odnom sposobe resheniya uravnenii diffuzionnogo tipa s pomoschyu razryvnogo metoda Galerkina na nestrukturirovannoi setke”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 16:2 (2014), 7–13 | Zbl

[19] Zhalnin R. V., Masyagin V. F., Panyushkina E. N., “O primenenii razryvnogo metoda Galerkina dlya chislennogo resheniya dvumernykh uravnenii diffuzionnogo tipa na nestrukturirovannykh raznesennykh setkakh”, Sovremennye problemy nauki i obrazovaniya, 2013, no. 6 http://www.science-education.ru/ru/article/view?id=10929 | Zbl

[20] Bassi F., Rebay S., “A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier–Stokes Equations”, J. Comput. Phys., 131 (1997), 267–279 | DOI | MR | Zbl

[21] Li B. Q., Discontinuous finite elements in fluid dynamics and heat transfer, Springer, Berlin, 2006, 578 pp. | MR | Zbl

[22] Arnold D. N., Brezzi F., Cockburn B., Marini L. D., “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM Journal on Numerical Analysis, 29 (2002), 1749–1779 | DOI | MR