Stability and differentiability with respect to small parameter of mixed value problem for a nonlinear partial differential equation of eighth order
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 82-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Paper deals with continuous dependence and differentiability with respect to small parameter of generalized solution of mixed value problem for nonlinear partial differential equation of the eighth order, left-hand side of which is superposition of two operators of fourth order. By the aid of Fourier method the mixed problem is reduced to the study of countable system of nonlinear Volterra integral equations of the second kind with small parameter. We proved the continuous dependence of generalized solution of considered mixed value problem with respect to small positive parameter. Also we proved the differentiability of the solution with respect to small positive parameter. While proofing the existence of derivative of countable system of nonlinear Volterra integral equations of the second kind the method of successive approximations is used. The results obtained in this paper play important role in construction of the asymptotic expansions with respect to small parameter of solution of mixed value problem for considered nonlinear partial differential equation of the eighth order.
Keywords: mixed value problem, equation of eighth order, superposition of differential operators, stability of solution with respect to small parameter, differentiability of solution with respect to small parameter.
@article{SVMO_2016_18_1_a9,
     author = {T. K. Yuldashev},
     title = {Stability and differentiability with respect to small parameter of mixed value problem for a nonlinear partial differential equation of eighth order},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {82--93},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a9/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Stability and differentiability with respect to small parameter of mixed value problem for a nonlinear partial differential equation of eighth order
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 82
EP  - 93
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a9/
LA  - ru
ID  - SVMO_2016_18_1_a9
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Stability and differentiability with respect to small parameter of mixed value problem for a nonlinear partial differential equation of eighth order
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 82-93
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a9/
%G ru
%F SVMO_2016_18_1_a9
T. K. Yuldashev. Stability and differentiability with respect to small parameter of mixed value problem for a nonlinear partial differential equation of eighth order. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 82-93. http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a9/

[11] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006, 248 pp.

[12] Zamyshlyaeva A. A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestnik Yuzhno-UralGU. Seriya: Matem. modelir. i programmirovanie, 7:2 (2014), 5 – 28 | MR | Zbl

[13] Benney D. J., “Interactions of permanent waves of finite amplitude”, Journ. Math. Phys., 43 (1964), 309 – 313 | DOI | MR | Zbl

[14] Abzalimov R. R., Salyakhova E. V., “Raznostno-analiticheskii metod vychisleniya sobstvennykh znachenii dlya uravnenii chetvertogo poryadka s razdelennymi kraevymi usloviyami”, Izv. vuzov. Matematika, 2008, no. 11, 3 – 11 | MR | Zbl

[15] Akhtyamov A. M., Ayupova A. R., “O reshenii zadachi diagnostirovaniya defektov v vide maloi polosti v sterzhne”, Zhurn. SVMO, 12:3 (2010), 37 – 42

[16] Dzhuraev T. D., Loginov B. V., Malyugina I. A., “Vychisleniya sobstvennykh znachenii i sobstvennykh funktsii nekotorykh differentsialnykh operatorov tretego i chetvertogo poryadkov”, Differents. uravneniya mat. fiziki i ikh prilozheniya, 1989, 24 – 36, Fan, Tashkent

[17] Turbin M. V., “Issledovanie nachalno-kraevoi zadachi dlya modeli dvizheniya zhidkosti Gershel-Balkli”, Vestnik VoronezhGU. Seriya: Fizika. Matematika, 2013, no. 2, 246 – 257

[18] Shabrov S. A., “Ob odnoi matematicheskoi modeli malykh deformatsii sterzhnevoi sistemy s vnutrennimi osobennostyami”, Vestnik VoronezhGU. Seriya: Fizika. Matematika, 2013, no. 1, 232 – 250

[19] Shabrov S. A., “Ob otsenkakh funktsii vliyaniya odnoi matematicheskoi modeli chetvertogo poryadka”, Vestnik VoronezhGU. Seriya: Fizika. Matematika, 2015, no. 2, 168 – 179 | Zbl

[20] Korpusov M. O., Razrushenie v parabolicheskikh i psevdoparabolicheskikh uravneniyakh s dvoinymi nelineinostyami, URSS, M., 2012, 184 pp.

[21] Mukminov F. Kh., Bikkulov I. M., “O stabilizatsii normy resheniya odnoi smeshannoi zadachi dlya parabolicheskikh uravnenii 4-go i 6-go poryadkov v neogranichennoi oblasti”, Mat. Sbornik, 195:3 (2004), 115 – 142 | DOI | MR | Zbl

[22] Yuldashev T. K., “O smeshannoi zadache dlya nelineinogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka s otrazhayuschim otkloneniem”, Vestnik Yuzhno-UralGU. Seriya: Matematika. Mekhanika. Fizika, 2011, no. 10 (227), 40 – 48 | Zbl

[23] Yuldashev T. K., “O smeshannoi zadache dlya nelineinogo differentsialnogo uravneniya, soderzhaschego kvadrat giperbolicheskogo operatora i nelineinoe otrazhayuschee otklonenie”, Vestnik TomGU. Matematika i Mekhanika, 14:2 (2011), 59 – 69

[24] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo differentsialnogo uravneniya chetvertogo poryadka s malym parametrom pri parabolicheskom operatore”, Zhurnal vychisl. matematiki i mat. fiziki, 51:9 (2011), 1703 – 1711 | MR | Zbl

[25] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya, soderzhaschego kub parabolicheskogo operatora”, Vestnik SibGAU, 35:2 (2011), 96 – 100

[26] Yuldashev T. K., “O smeshannoi zadache dlya odnogo nelineinogo integro-differentsialnogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka”, Zhurn. SVMO, 14:2 (2012), 137 – 142

[27] Yuldashev T. K., “Ob ustoichivosti po malym parametram resheniya smeshannoi zadachi dlya nelineinogo psevdogiperbolicheskogo uravneniya”, Zhurn. SVMO, 15:1 (2013), 134 – 142 | MR | Zbl

[28] Yuldashev T. K., “Ob odnoi obratnoi zadache dlya lineinogo integro-differentsialnogo uravneniya Fredgolma v chastnykh proizvodnykh chetvertogo poryadka”, Vestnik VoronezhGU. Seriya: Fizika. Matematika, 2015, no. 2, 180 – 189 | MR | Zbl

[29] Koshelev A. I., Chelkak S. I., “O regulyarnosti reshenii sistem vysshikh poryadkov”, Dokl. AN SSSR, 272:2 (1983), 297 – 300 | MR | Zbl

[30] Pokhozhaev S. I., “O kvazilineinykh ellipticheskikh uravneniyakh vysokogo poryadka”, Differents. uravneniya, 17:1 (1981), 115 – 128 | MR | Zbl

[31] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973, 219 pp. | MR

[32] Todorov T. G., “O nepreryvnosti ogranichennykh obobschennykh reshenii kvazilineinykh ellipticheskikh uravnenii vysokogo poryadka”, Vestnik LGU, 19 (1975), 56 – 63 | Zbl

[33] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zhurnal vychisl. matematiki i mat. fiziki, 52:1 (2012), 112 – 123 | MR | Zbl

[34] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo uravneniya s psevdoparabolicheskim operatorom vysokoi stepeni”, Vestnik VoronezhGU. Seriya: Fizika. Matematika, 2013, no. 2, 277 – 295

[35] Yuldashev T. K., Nelineinye uravneniya v chastnykh proizvodnykh vysokikh poryadkov, SibGAU, Krasnoyarsk, 2014, 187 pp.

[36] Yuldashev T. K., “Obratnaya zadacha dlya odnogo nelineinogo uravneniya v chastnykh proizvodnykh vosmogo poryadka”, Vestnik SamGTU. Seriya: Fiz.-mat. nauki, 19:1 (2015), 136 – 154 | DOI | Zbl