The branching of periodic solutions of inhomogeneous linear differential equations with degenerate or identity operator in the derivative and the disturbance in the form of small linear term
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 45-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Banach space existence and uniqueness of periodic solutions of inhomogeneous linear differential equations with degenerate or identity operator in the derivative and a disturbance in the form of small linear term proved by branching theory methods. The article shows that the periodic solution has a pole at the point $ \varepsilon = 0 $ , and if $ \varepsilon = 0 $ the solution goes to $2n$–parameter set of periodic solutions. The result is obtained by applying the theory of generalized Jordan sets, reducing the original problem to the investigation of the Lyapunov-Schmidt resolution system in the root subspace. In this resolution the system is divided into two non-homogeneous systems of linear algebraic equations. These systems have the only solution when $\varepsilon\neq 0$; when $\varepsilon = 0 $ they have $n$-parameter set of solutions, respectively.
Keywords: differential equations in Banach spaces , generalized Jordan sets, Lyapunov-Schmidt resolution system in the root subspace.
@article{SVMO_2016_18_1_a5,
     author = {A. A. kjashkin and B. V. Loginov and P. A. Shamanaev},
     title = {The branching of periodic solutions of inhomogeneous linear differential equations with degenerate or identity operator in the derivative and the disturbance in the form of small linear term},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {45--53},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a5/}
}
TY  - JOUR
AU  - A. A. kjashkin
AU  - B. V. Loginov
AU  - P. A. Shamanaev
TI  - The branching of periodic solutions of inhomogeneous linear differential equations with degenerate or identity operator in the derivative and the disturbance in the form of small linear term
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 45
EP  - 53
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a5/
LA  - ru
ID  - SVMO_2016_18_1_a5
ER  - 
%0 Journal Article
%A A. A. kjashkin
%A B. V. Loginov
%A P. A. Shamanaev
%T The branching of periodic solutions of inhomogeneous linear differential equations with degenerate or identity operator in the derivative and the disturbance in the form of small linear term
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 45-53
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a5/
%G ru
%F SVMO_2016_18_1_a5
A. A. kjashkin; B. V. Loginov; P. A. Shamanaev. The branching of periodic solutions of inhomogeneous linear differential equations with degenerate or identity operator in the derivative and the disturbance in the form of small linear term. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 45-53. http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a5/

[1] Wolter Noordorf, Leyden, 1974, 524 pp. | MR

[2] Trenogin V. A., “Periodicheskie resheniya i resheniya tipa perekhoda abstraktnykh uravnenii reaktsii-diffuzii”, Voprosy kachestvennoi teorii differentsialnykh uravnenii, “Nauka”, SOAN SSSR, Novosibirsk, 1988, 133-140

[3] Kyashkin A. A., Loginov B. V., Shamanaev P. A., “Kommentarii k zadacham o vozmuscheniyakh lineinogo uravneniya malym lineinym slagaemym i spektralnykh kharakteristik fredgolmova operatora”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 15:3 (2013), 100-107 | Zbl

[4] Kyashkin A. A., Loginov B. V., Shamanaev P. A., “Kommentarii k zadache o vetvlenii periodicheskikh reshenii pri bifurkatsii Andronova-Khopfa v differentsialnykh uravneniyakh s vyrozhdennym operatorom pri proizvodnoi”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 16:4 (2014), 33-40 | Zbl

[5] Loginov B. V., Rusak Yu. B., “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Cb. n. rabot, ed. M. S. Salakhitdinov, Izd-vo “Fan” AN Uzb.SSR, Tashkent, 1978, 133-148 | MR

[6] Rusak Yu. B., Obobschennaya zhordanova struktura v teorii vetvleniya, kandidatskaya dissertatsiya, Inst. matematiki im. V. M. Romanovskogo AN Uzb.SSR, Tashkent, 1979, 126 pp.

[7] Rusak Yu. B., “Obobschennaya zhordanova struktura analiticheskoi operator-funktsii i sopryazhennoi k nei”, Izvestiya Akad. Nauk Uzb.SSR, fiz-mat., 1978, no. 2, 15-19 | Zbl

[8] Loginov B. V., Rousak Yu. B., “Generalized Jordan structure in the problem of the stability of bifurcating solutions”, Nonlinear Analysis: TMA, 17:3 (1991), 219-232 | DOI | MR | Zbl

[9] Loginov B. V., “Determination of the branching equation by its group symmetry - Andronov-Hopf bifurcation”, Nonlinear Analysis: TMA, 28:12 (1997), 2035-2047 | DOI | MR

[10] Loginov B. V., Kim-Tyan L. R., Rousak Yu.B., “On the stability of periodic solutions for differential equations with a Fredholm operator at the highest derivative”, Nonlinear analysis, 67:5 (2007), 1570-1585 | DOI | MR | Zbl

[11] Konopleva I.V., Loginov B.V., Rusak Yu.B., “Simmetriya i potentsialnost uravnenii razvetvleniya v kornevykh podprostranstvakh v neyavno zadannykh statsionarnykh i dinamicheskikh bifurkatsionnykh zadachakh”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Estestvennye nauki, 2009, 115-124