On the topology of the potential magnetic field
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 31-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The geometry of the magnetic fields in plasma plays an important role in understanding a number of fundamental problems in physics. lt is clear that the magnetic field like any vector field defines a dynamical system on some three-dimensional manifold. This idea is used by physicists for a long time (since the middle of the last century). This work is devoted to the application of methods dynamical systems to description of the patterns of magnetic fields in the solar corona. Such models correspond to a gradient-like dynamical systems for which there is a complete topological classification. It follows that magnetic field with four springs can have countable number of structurally stable configurations of the field geometry.
Keywords: singular points of the field, magnetic field lines, sources, sinks, separatrix, separators, heteroclinic curves.
@article{SVMO_2016_18_1_a4,
     author = {M. L. Kolomiets and A. N. Saharov and E. D. Tregubova},
     title = {On the topology of the potential magnetic field},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {31--44},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a4/}
}
TY  - JOUR
AU  - M. L. Kolomiets
AU  - A. N. Saharov
AU  - E. D. Tregubova
TI  - On the topology of the potential magnetic field
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 31
EP  - 44
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a4/
LA  - ru
ID  - SVMO_2016_18_1_a4
ER  - 
%0 Journal Article
%A M. L. Kolomiets
%A A. N. Saharov
%A E. D. Tregubova
%T On the topology of the potential magnetic field
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 31-44
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a4/
%G ru
%F SVMO_2016_18_1_a4
M. L. Kolomiets; A. N. Saharov; E. D. Tregubova. On the topology of the potential magnetic field. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 31-44. http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a4/

[1] D.W. Longcope, “Topological Methods for the Analysis of Solar Magnetic Fields”, Living Rev. Solar Phys., 2:7 (2005), 5–72

[2] A.I. Morozov, L.S. Solovev, “Geometriya magnitnogo polya”, Voprosy teorii plazmy, 2 (1963), 3–91 | MR

[3] V. I. Arnold, B. A. Khesin, Topologicheskie metody v gidrodinamike, Izdatelstvo MTsNMO, M., 2007

[4] B.B. Kadomtsev, “Perezamykanie magnitnykh silovykh linii”, Uspekhi fizicheskikh nauk, 151:1 (1987), 3–29 | DOI

[5] Prist E., Forbs T., Magnitnoe peresoedinenie: magnitogidrodinamicheskaya teoriya i prilozheniya, Fizmatlit, M., 2005

[6] Landau L.D., Lifshits E.M., Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[7] A.O. Prishlyak, “Vektornye polya Morsa-Smeila bez zamknutykh traektorii na trekhmernykh mnogoobraziyakh”, Matem. zametki, 71:2 (2002), 254–260 | DOI | MR | Zbl

[8] V.Z. Grines, E.Ya. Gurevich, E.V. Zhuzhoma, S.Kh. Zinina, “Geteroklinicheskie krivye diffeomorfizmov Morsa-Smeila i separatory v magnitnom pole plazmy”, Nelineinaya dinamika, 10:4 (2014), 427–438 | Zbl

[9] V.Z. Grines, E.V. Zhuzhoma, V.S. Medvedev, O.V. Pochinka, “O suschestvovanii magnitnykh linii, soedinyayuschikh nulevye tochki”, Zhurnal SVMO, 16:1 (2014), 8–15 | Zbl

[10] V. Grines, T. Medvedev, O. Pochinka, E. Zhuzhoma, “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Physica D, 294 (2015), 1–5 | DOI | MR | Zbl

[11] H. Alfven, “On sunspots and the solar cycle”, Arc. F. Math. Astr. Phys., 29A (1943), 1-17

[12] V.I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[13] G. Hornig, K. Schindler, “Magnetic topology and the problem of its invariant definition”, Physics of Plasmas, 3 (1996), 781–793 | DOI | MR

[14] D. P. Kostomarov, E. Yu. Echkina, I. N. Inovenkov, S. V. Bulanov, “Modelirovanie magnitnogo perezamykaniya v trekhmernoi geometrii”, Matem. modelirovanie, 21:11 (2009), 3–15 | MR | Zbl

[15] M.L. Kolomiets, A.N. Sakharov, “Topologiya magnitnykh polei i dinamicheskie sistemy”, Zhurnal SVMO, 17:2 (2015), 51–57 | Zbl

[16] Dubrovin B.A., Novikov S.P., Fomenko A.T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[17] Grines V.Z., Zhuzhoma E.V., Medvedev V.S., “Novye sootnosheniya dlya sistem Morsa-Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Matem. sbornik, 194:7 (2003), 25–56 | DOI | MR | Zbl

[18] Molodenskii M. M., Syrovatskii S. I., “Magnitnoe pole v aktivnykh oblastyakh i ego nulevye tochki”, Astronomicheskii Zhurnal, 54 (1977), 1293–1304

[19] Gorbachev V.S., Kelner S.R., Somov B.V., Shvarts A.S., “Novyi topologicheskii podkhod k voprosu o triggere solnechnykh vspyshek”, Astronomicheskii zhurnal, 65:3 (1988), 601–612 | MR

[20] C. Beveridge, D.W. Longcope, “On Three-Dinensional Magnetic Sceleton Elements due to Discrete Flux Sources”, Solar Phisics, 227:2 (2005), 193–206 | DOI

[21] R. Close, C. Parnell, E. Priest, “Domain structure in complex 3D magnetic fields”, Geophysical and Astrophysical Fluid Dynamics, 99:6 (2005), 513–534 | DOI | MR | Zbl

[22] C. Beveridge, E.R. Priest, D.S. Brown, “Magnetic topologies in the solar corona due to four discrete photospheric flux regions”, Geophysical Astrophysical Fluid Dynamics, 98:5 (2004), 429–446 | DOI | MR

[23] R. Maclean, C. Beveridge, E. Priest, “Coronal Magnetic Topologies in Spherical Geometry – II. Four Balanced Flux Sources”, Solar Phys., 238 (2006), 13–27 | DOI

[24] D. Pontin, “Theory of magnetic reconnection in solar and astrophysical plasmas”, Phil. Trans. R. Soc. A., 370 (2012), 3169–3192 | DOI

[25] N.A. Murphy, C.E. Parnell, A.L. Haynes, “Bifurcations of magnetic topology by the criation and annihilation of null points”, Phys. of Plasmas, 22:10 (2015), 102117–7 | DOI

[26] R. Maclean, C. Beveridge, D. Longcope, D. Brown, E. Priest, “A topological analysis of the magnetic breakout model for an eruptive solar flare”, Proc. R. Soc. A, 461:5 (2005), 2099–2120 | DOI | MR | Zbl

[27] R. Close, C. Parnell, E. Priest, “Separators in 3D Quiet-Sun Magnetic Fields”, Solar Physics, 225 (2005), 21–46 | DOI