On the number of linear particular integrals of
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 27-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the ordinary differential equation $P(x,y)dy-Q(x,y)dx=0$ where $P$, $Q$ are relatively prime polynomials of degree, greater than 1. Coefficients of the equations and variables x, y may be complex. We prove that when this equation has an infinite number of linear partial integrals, the polynomials $P$, $Q$ can not be relatively prime. The main result of the paper contains an accurate estimate of the number of different linear particular integrals; estimate of the number of linear integrals when the invariant sets corresponding to line integrals have no points in common; estimate of the number of line integrals in a case where they have a common singular point. The method of proof essentially uses the initial assumption that the polynomials $P$, $Q$ are relatively prime. An example is given that implements proven result.
Keywords: polynomial vector fields, linear particular integrals, differential equations.
@article{SVMO_2016_18_1_a3,
     author = {M. V. Dolov and E. V. Kruglov},
     title = {On the number of linear particular integrals of},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {27--30},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a3/}
}
TY  - JOUR
AU  - M. V. Dolov
AU  - E. V. Kruglov
TI  - On the number of linear particular integrals of
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 27
EP  - 30
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a3/
LA  - ru
ID  - SVMO_2016_18_1_a3
ER  - 
%0 Journal Article
%A M. V. Dolov
%A E. V. Kruglov
%T On the number of linear particular integrals of
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 27-30
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a3/
%G ru
%F SVMO_2016_18_1_a3
M. V. Dolov; E. V. Kruglov. On the number of linear particular integrals of. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 27-30. http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a3/

[1] Dolov M.V., Kruglov E.V., “O chisle lineinykh chastnykh integralov algebraicheskikh differentsialnykh uravnenii”, Differentsialnye uravneniya, 51:4 (2015), 553–555 | DOI | Zbl

[2] Dolov M.V., Kruglov E.V., “O chisle lineinykh chastnykh integralov algebraicheskikh differentsialnykh uravnenii”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam, Suzdal, Tezisy dokladov, 2014, 58-59

[3] Llibre J., Medrado J.C., “On the invariant hyperpnanes for $d$-dimensional polynomial vector fields”, Journal of Phisics A: Mathematical and Theoretical, 40 (2007), 8385–8391 | DOI | MR | Zbl

[4] Artes J. C., Grunbaum B., Llibre J., “On the number of invariant straight lines for polynomial differential systems”, Pacific Journal of Mathematics, 184:2 (1998), 207-230 | DOI | MR | Zbl

[5] Lyubimova P.A., “Ob odnom differentsialnom uravnenii s integralnymi pryamymi”, Differentsialnye i integralnye uravneniya, Mezhvuz. sb., GGU, Gorkii, 1977, 19-22

[6] Dolov M.V., Bubnova I.V., “Sistemy s lineinymi chastnymi integralami”, Izvestiya RAEN. Differentsialnye uravneniya, 2006, no. 11, 79-80

[7] Dolov M.V., Chistyakova S.A., “O chisle lineinykh chastnykh integralov kubicheskoi sistemy, vyrozhdennoi na beskonechnosti”, Trudy Srednevolzhskogo matematicheskogo obschestva, 9:2 (2007), 62-67

[8] Dolov M.V., Chistyakova S.A., “O lineinykh chastnykh integralakh polinomialnykh vektornykh polei chetvertoi stepeni s vyrozhdennoi beskonechnostyu. III”, Vestnik Nizhegorodskogo universiteta, 2011, no. 2, 123-129