On the number of linear particular integrals of
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 27-30

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the ordinary differential equation $P(x,y)dy-Q(x,y)dx=0$ where $P$, $Q$ are relatively prime polynomials of degree, greater than 1. Coefficients of the equations and variables x, y may be complex. We prove that when this equation has an infinite number of linear partial integrals, the polynomials $P$, $Q$ can not be relatively prime. The main result of the paper contains an accurate estimate of the number of different linear particular integrals; estimate of the number of linear integrals when the invariant sets corresponding to line integrals have no points in common; estimate of the number of line integrals in a case where they have a common singular point. The method of proof essentially uses the initial assumption that the polynomials $P$, $Q$ are relatively prime. An example is given that implements proven result.
Keywords: polynomial vector fields, linear particular integrals, differential equations.
@article{SVMO_2016_18_1_a3,
     author = {M. V. Dolov and E. V. Kruglov},
     title = {On the number of linear particular integrals of},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {27--30},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a3/}
}
TY  - JOUR
AU  - M. V. Dolov
AU  - E. V. Kruglov
TI  - On the number of linear particular integrals of
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 27
EP  - 30
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a3/
LA  - ru
ID  - SVMO_2016_18_1_a3
ER  - 
%0 Journal Article
%A M. V. Dolov
%A E. V. Kruglov
%T On the number of linear particular integrals of
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 27-30
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a3/
%G ru
%F SVMO_2016_18_1_a3
M. V. Dolov; E. V. Kruglov. On the number of linear particular integrals of. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 27-30. http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a3/