Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the class $G$ of A-diffeomorphisms $f$, defined on a closed 3-manifold $M^3$. The nonwandering set is located on finite number of pairwise disjoint $f$-invariant 2-tori embedded in $M^3$. Each torus $T$ is a union of $W^u_{B_T}\cup W^u_{\Sigma_T}$ or $W^s_{B_T}\cup W^s_{\Sigma_T}$, where $B_T$ is 1-dimensional basic set exteriorly situated on $T$ and $\Sigma_T$ is finite number of periodic points with the same Morse number. We found out that an ambient manifold which allows such diffeomorphisms is homeomorphic to a quotient space $M_{\widehat J}=\mathbb T^2\times[0,1]/_\sim$, where $(z,1)\sim(\widehat J(z),0)$ for some algebraic torus automorphism $\widehat J$, defined by matrix $J\in GL(2,\mathbb Z)$ which is either hyperbolic or $J=\pm Id$. We showed that each diffeomorphism $f\in G$ is semiconjugate to a local direct product of an Anosov diffeomorphism and a rough circle transformation. We proved that structurally stable diffeomorphism $f\in G$ is topologically conjugate to a local direct product of a generalized DA-diffeomorphism and a rough circle transformation. For these diffeomorphisms we found the complete system of topological invariants; we also constructed a standard representative in each class of topological conjugation.
Keywords: А-diffeomorphism, DA-diffeomorphism, topological invariant, topological conjugation.
@article{SVMO_2016_18_1_a2,
     author = {V. Z. Grines and O. V. Pochinka and A. A. Shilovskaya},
     title = {Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a2/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - O. V. Pochinka
AU  - A. A. Shilovskaya
TI  - Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 17
EP  - 26
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a2/
LA  - ru
ID  - SVMO_2016_18_1_a2
ER  - 
%0 Journal Article
%A V. Z. Grines
%A O. V. Pochinka
%A A. A. Shilovskaya
%T Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 17-26
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a2/
%G ru
%F SVMO_2016_18_1_a2
V. Z. Grines; O. V. Pochinka; A. A. Shilovskaya. Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a2/

[1] Brown A., “Nonexpanding attractors: conjugacy to algebraic models and classification in 3-manifolds”, Journal of Modern Dynamics, 4 (2010), 517–548 | DOI | MR | Zbl

[2] Bothe H., “The ambient structure of expanding attractors, I. Local triviality, tubular neighdorhoods II”, Math. Nachr., 107 (1982), 327–348 | DOI | MR | Zbl

[3] Bothe H., “The ambient structure of expanding attractors, II. Solenoids in 3-manifolds”, Math. Nachr., 112 (1983), 69–102 | DOI | MR | Zbl

[4] Bonatti H., Guelman N., “Axiom A diffeomorphisms which are derived from Anosov flows”, Journal of Modern Dynamics, 4:1 (2010), 1–63 | DOI | MR | Zbl

[5] Bonatti Ch., Langevin R., Diffeomorphismes de Smale des surfaces, Asterisque, Paris, 2011, 250 pp. | MR

[6] Franks J., “Anosov Diffeomorphisms on Tori”, Transactions of the American Mathematical Society, 145 (1969), 117–124 | DOI | MR | Zbl

[7] Grines V. Z., Levchenko Yu. A., Pochinka O. V., “O topologicheskoi klassifikatsii diffeomorfizmov na 3-mnogoobraziyakh s poverkhnostnymi dvumernymi attraktorami i repellerami”, Nelineinaya dinamika, 10 (2014), 17–33

[8] Grines V., Levchenko Yu., Medvedev V., Pochinka O., “On the Dynamical Coherence of Structurally Stable 3-diffeomorphisms”, Regular and Chaotic Dynamics, 19 (2014), 506–512 | DOI | MR | Zbl

[9] Grines V., Levchenko Yu., Medvedev V., Pochinka O., “The topological classification of structural stable 3-diffeomorphisms with two-dimensional basic sets”, Nonlinearity, 28 (2015), 4081–4102 | DOI | MR | Zbl

[10] Grines V. Z., Levchenko Yu. A., “O topologicheskoi klassifikatsii diffeomorfizmov trekhmernykh mnogoobrazii s dvumernymi poverkhnostnymi attraktorami i repellerami”, Doklady Akademii Nauk, 447:2 (2012), 127–129 | Zbl

[11] Grines V., Zhuzhoma E., “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Amer. Math. Soc., 357 (2005), 617–667 | DOI | MR | Zbl

[12] Zhuzhoma E. V., Medvedev V. S., “O neorientiruemykh dvumernykh bazisnykh mnozhestvakh na 3-mnogoobraziyakh”, Matem. sb., 193:6 (2002), 83–104 | DOI | Zbl

[13] Grines V. Z., Medvedev V. S., Zhuzhoma E. V., “O poverkhnostnykh attraktorakh i repellerakh na 3-mnogoobraziyakh”, Mat. zam., 78:6 (2005), 813–826 | DOI | Zbl

[14] Grines V. Z., Pochinka O. V., Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, Moskva–Izhevsk, 2011, 424 pp.

[15] Kaplan J., Mallet-Paret J., Yorke J., “The Lapunov dimension of nonwhere diffferntiable attracting torus”, Ergodic theory and Dynam. Systems, 2 (1984), 261–281 | DOI | MR

[16] Ma J., Yu B., “Genus two Smale-Williams solenoid attractors in 3-manifolds”, Journal of Knot Theory and Its Ramifications, 20:6 (2011), 909–926 | DOI | MR | Zbl

[17] Maier A. G., “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uchen. zap. GGU, 12 (1939), 215–229

[18] Newhouse S. E., “On Codimension One Anosov Diffeomorphisms”, American Journal of Mathematics, 92:3 (1970), 761–770 | DOI | MR | Zbl

[19] Nyukhaus Sh. E., Gladkie dinamicheskie sistemy, v. 4, Izd. “Mir”, 1977, 87–98 | MR

[20] Plykin R. V., “O topologii bazisnykh mnozhestv diffeomorfizmov Smeila”, Matem. sb., 84(126) (1971), 301–312 | MR | Zbl

[21] Plykin R. V., “Istochniki i stoki A-diffeomorfizmov na poverkhnostyakh”, Mat. sb., 23 (1974), 223–253

[22] Plykin R. V., “O giperbolicheskikh attraktorakh diffeomorfizmov”, UMN, 35:3(213) (1980), 94–104 | MR | Zbl

[23] Robinson C., Dynamical Systems: stability, symbolic dynamics, and chaos, Studies in Adv. Math., Sec. edition, CRC Press., 1999, 506 pp. | MR | Zbl

[24] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[25] Smale S., “Stability and isotopy in discrete dynamical systems”, Dynamical Systems, 1973, 527–530 | MR | Zbl

[26] Williams R. F., “One-dimensional non-wandering sets”, Topology, 6 (1967), 473–487 | DOI | MR | Zbl

[27] Zhuzhoma E. V., “O klassifikatsii odnomernykh rastyagivayuschikhsya attraktorov”, Matem. zametki, 86:3 (2009), 360–370 | DOI | MR | Zbl