Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 17-26

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the class $G$ of A-diffeomorphisms $f$, defined on a closed 3-manifold $M^3$. The nonwandering set is located on finite number of pairwise disjoint $f$-invariant 2-tori embedded in $M^3$. Each torus $T$ is a union of $W^u_{B_T}\cup W^u_{\Sigma_T}$ or $W^s_{B_T}\cup W^s_{\Sigma_T}$, where $B_T$ is 1-dimensional basic set exteriorly situated on $T$ and $\Sigma_T$ is finite number of periodic points with the same Morse number. We found out that an ambient manifold which allows such diffeomorphisms is homeomorphic to a quotient space $M_{\widehat J}=\mathbb T^2\times[0,1]/_\sim$, where $(z,1)\sim(\widehat J(z),0)$ for some algebraic torus automorphism $\widehat J$, defined by matrix $J\in GL(2,\mathbb Z)$ which is either hyperbolic or $J=\pm Id$. We showed that each diffeomorphism $f\in G$ is semiconjugate to a local direct product of an Anosov diffeomorphism and a rough circle transformation. We proved that structurally stable diffeomorphism $f\in G$ is topologically conjugate to a local direct product of a generalized DA-diffeomorphism and a rough circle transformation. For these diffeomorphisms we found the complete system of topological invariants; we also constructed a standard representative in each class of topological conjugation.
Keywords: А-diffeomorphism, DA-diffeomorphism, topological invariant, topological conjugation.
@article{SVMO_2016_18_1_a2,
     author = {V. Z. Grines and O. V. Pochinka and A. A. Shilovskaya},
     title = {Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a2/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - O. V. Pochinka
AU  - A. A. Shilovskaya
TI  - Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 17
EP  - 26
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a2/
LA  - ru
ID  - SVMO_2016_18_1_a2
ER  - 
%0 Journal Article
%A V. Z. Grines
%A O. V. Pochinka
%A A. A. Shilovskaya
%T Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 17-26
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a2/
%G ru
%F SVMO_2016_18_1_a2
V. Z. Grines; O. V. Pochinka; A. A. Shilovskaya. Diffeomorphisms of 3-manifolds with 1-dimensional basic sets exteriorly situated on 2-tori. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a2/