Modeling of a non-stationary trajectories ensemble using Fokker-Planck equation
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 126-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is Discusses the kinetic Fokker-Planck equation for sample density distribution functions of random variables seen in practice in the form of the time number. Instead of studying one of the possible realizations of the time series it is proposed to consider an ensemble of random trajectories generated by the empirical distribution function. A model is proposed to describe the time variation functional defined on random trajectories and practical importance. This, for example, the indicator of level of pollution of the metropolis in the form of average pollutant concentration over a certain period of time, a similar indicator of the changing epidemiology in the region, the functional efficiency in the management of pollution in the form of lower pollution levels as a result of certain actions, etc. There is formulated a method of testing the control functions for the non-stationary trajectories ensemble.
Keywords: random distribution function, the ensemble of non-stationary trajectories, the testing control functions.
Mots-clés : the Fokker-Planck equation
@article{SVMO_2016_18_1_a13,
     author = {L. V. Klochkova and Yu. N. Orlov and S. A. Feodorov},
     title = {Modeling of a non-stationary trajectories ensemble using {Fokker-Planck} equation},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {126--134},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a13/}
}
TY  - JOUR
AU  - L. V. Klochkova
AU  - Yu. N. Orlov
AU  - S. A. Feodorov
TI  - Modeling of a non-stationary trajectories ensemble using Fokker-Planck equation
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 126
EP  - 134
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a13/
LA  - ru
ID  - SVMO_2016_18_1_a13
ER  - 
%0 Journal Article
%A L. V. Klochkova
%A Yu. N. Orlov
%A S. A. Feodorov
%T Modeling of a non-stationary trajectories ensemble using Fokker-Planck equation
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 126-134
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a13/
%G ru
%F SVMO_2016_18_1_a13
L. V. Klochkova; Yu. N. Orlov; S. A. Feodorov. Modeling of a non-stationary trajectories ensemble using Fokker-Planck equation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 126-134. http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a13/

[1] Orlov Yu. N., Osminin K. P., “Postroenie vyborochnoi funktsii raspredeleniya dlya prognozirovaniya nestatsionarnogo vremennogo ryada”, Matematicheskoe modelirovanie, 2008, no. 9, 23–33 | Zbl

[2] Orlov Yu. N., Osminin K. P., Nestatsionarnye vremennye ryady: metody prognozirovaniya s primerami analiza finansovykh i syrevykh rynkov, Editorial URSS/Knizhnyi dom “LIBROKOM”, M., 2011, 384 pp.

[3] Klochkova L. V., Orlov Yu. N., Tishkin V. F., “Matematicheskoe modelirovanie korrelyatsii epidemicheskoi obstanovki v megapolisakh ot sostoyaniya vozdukha”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 7 (2012), 34–43

[4] Zenyuk D. A.,Klochkova L. V., Orlov Yu. N., “Modelirovanie nestatsionarnykh sluchainykh protsessov kineticheskimi uravneniyami s drobnymi proizvodnymi”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 17:1 (2016)

[5] Vapnik V. N., Chervonenkis A. Ya., Teoriya raspoznavaniya obrazov, Nauka, M., 1974, 416 pp. | MR

[6] Bosov A. D., Kalmetev R. Sh., Orlov Yu. N., “Modelirovanie nestatsionarnogo vremennogo ryada s zadannymi svoistvami vyborochnogo raspredeleniya”, Matematicheskoe modelirovanie, 2014, no. 3, 97–107 | Zbl

[7] Bosov A. D., Orlov Yu. N., “Empiricheskoe uravnenie Fokkera–Planka dlya prognozirovaniya nestatsionarnykh vremennykh ryadov”, Preprinty IPM im. M. V. Keldysha, 2013, 003, 30 pp.

[8] Orlov Yu. N., “Optimalnoe razbienie gistogrammy dlya otsenivaniya vyborochnoi plotnosti raspredeleniya nestatsionarnogo vremennogo ryada.”, Preprinty IPM im. M. V. Keldysha, 2013, 014, 26 pp.

[9] Orlov Yu. N., Kineticheskie metody issledovaniya nestatsionarnykh vremennykh ryadov, MFTI, Moskva, 2014, 276 pp.

[10] Orlov Yu. N., Fedorov S. L., “Modelirovanie i statisticheskii analiz funktsionalov, zadannykh na vyborkakh iz nestatsionarnogo vremennogo ryada.”, Preprinty IPM im. M. V. Keldysha, 2014, 043, 26 pp.