Nonlocal solvability of the liminal equation of the creeping dislocations density and the topological invariant of the linear thermal deformation of the shell
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 118-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the description of a deformation of a shell a coefficient introduced that links the gradient of bending in two directions. That greatly simplified the task. The stress in the shell is proportional to the expected shell deformation and to the square of the gradient of the curvature. The corresponding equation for the scalar density of dislocations is referred to as liminal. A dislocation structure of the considered problem is characterized by a kind of topological invariant for edge dislocations. The value of one of coefficients in liminal equation is closely related to the characteristics of this topological invariant. Characteristics selected in this work allowed us to prove the existence of nonlocal solutions describing the process by which the dislocation density tends to zero. But because of physical grounds and mathematical features of the liminal equations the dislocation density cannot be zero, and then the time of existence of the solution is determined from the condition that the dislocation density decreases to a certain value, characterized by a small dimensionless coefficient $\delta$. Under this assumption, the new global estimates are obtained, based on which the local solution, the existence of which was proved in previous works, extended over a finite number of steps for the whole interval in which the dislocation density is not less than a certain value, characterized by the coefficient $\delta$. An explicit formula to estimate the length of the existence interval of the solution under the made assumptions and conditions is obtained. The mathematical part of the study of the considered problem is made on the basis of the method of an additional argument.
Keywords: dislocations density, nonlinear first-order partial differential equation, liminality, method of an additional argument, global estimates, topological invariant.
@article{SVMO_2016_18_1_a12,
     author = {S. N. Alekseenko and S. N. Nagornyh and D. V. Khiteva},
     title = {Nonlocal solvability of the liminal equation of the creeping dislocations density and the topological invariant of the linear thermal deformation of the shell},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {118--125},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a12/}
}
TY  - JOUR
AU  - S. N. Alekseenko
AU  - S. N. Nagornyh
AU  - D. V. Khiteva
TI  - Nonlocal solvability of the liminal equation of the creeping dislocations density and the topological invariant of the linear thermal deformation of the shell
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 118
EP  - 125
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a12/
LA  - ru
ID  - SVMO_2016_18_1_a12
ER  - 
%0 Journal Article
%A S. N. Alekseenko
%A S. N. Nagornyh
%A D. V. Khiteva
%T Nonlocal solvability of the liminal equation of the creeping dislocations density and the topological invariant of the linear thermal deformation of the shell
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 118-125
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a12/
%G ru
%F SVMO_2016_18_1_a12
S. N. Alekseenko; S. N. Nagornyh; D. V. Khiteva. Nonlocal solvability of the liminal equation of the creeping dislocations density and the topological invariant of the linear thermal deformation of the shell. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 118-125. http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a12/

[1] Alekseenko S. N., Nagornykh S. N., Khiteva D. V., “Liminalnoe dissipativnoe uravnenie plotnosti perepolzayuschikh dislokatsii dlya odnokomponentnogo izgiba ploskoi plastiny”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 16:1 (2014), 24 – 31 | MR | Zbl

[2] Landau L. D., Lifshits E. M., Teoriya uprugosti, Nauka, M., 1987 | MR

[3] Kozlov E. V., Popova N. A., Koneva N. A., “Skalyarnaya plotnost dislokatsii vo fragmentakh s raznymi tipami substruktur”, Pisma o materialakh, 1 (2011), 15 – 18

[4] Fridel Zh., Dislokatsii, Mir, M, 1967

[5] Alekseenko S. N., Khiteva D. V., “O differentsiruemosti reshenii liminalnogo dissipativnogo uravneniya”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 17:3 (2015), 7 – 11 | Zbl

[6] Alekseenko S. N., Elkina E. A., “Primenenie metoda dopoplnitelnogo argumenta k issledovaniyu nelokalnoi razreshimosti zadachi Koshi dlya uravnenii pervogo poryadka s differentsialnym operatorom tipa polnoi proizvodnoi po vremeni”, Trudy NGTU im. R.E. Alekseeva, 2:27 (2011), 320 – 329 | MR