Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2016_18_1_a1, author = {V. Z. Grines and E. V. Zhuzhoma and S. V. Medvedev and N. A. Tarasova}, title = {On the existence of periodic orbits for continuous {Morse-Smale} flows}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {12--16}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a1/} }
TY - JOUR AU - V. Z. Grines AU - E. V. Zhuzhoma AU - S. V. Medvedev AU - N. A. Tarasova TI - On the existence of periodic orbits for continuous Morse-Smale flows JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2016 SP - 12 EP - 16 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a1/ LA - ru ID - SVMO_2016_18_1_a1 ER -
%0 Journal Article %A V. Z. Grines %A E. V. Zhuzhoma %A S. V. Medvedev %A N. A. Tarasova %T On the existence of periodic orbits for continuous Morse-Smale flows %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2016 %P 12-16 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a1/ %G ru %F SVMO_2016_18_1_a1
V. Z. Grines; E. V. Zhuzhoma; S. V. Medvedev; N. A. Tarasova. On the existence of periodic orbits for continuous Morse-Smale flows. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 12-16. http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a1/
[1] Anosov D.V., “Iskhodnye ponyatiya. Elementarnaya teoriya”, Sovremennye problemy matematiki, Fundamentalnye napravleniya (Itogi nauki i tekhniki), 1, 1985, 156–204
[2] Anosov D.V., “Grubye sistemy”, Trudy MIAN SSSR, 169, 1985, 59–93
[3] Grines V.Z., Pochinka O.V., Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, Izdatelstvo RKhD, Moskva-Izhevsk, 2011
[4] Grines V.Z., Zhuzhoma E.V., Medvedev V.C., Pochinka O.V., “Globalnye attraktor i repeller diffeomorfizmov Morsa-Smeila”, Trudy MIAN, 271, 2010, 1–20
[5] Zhuzhoma E.V., Medvedev V.C., “Globalnaya dinamika sistem Morsa-Smeila”, Trudy MIAN, 261, 2008, 115–139 | Zbl
[6] Keldysh L.V., “Topologicheskie vlozheniya v evklidovo prostranstvo”, Trudy MIAN SSSR, 81, 1966, 1–184
[7] Bonatti C., Grines V., Medvedev V., Pecou E., “Three-dimensional manifolds admitting Morse-Smale diffeomorphisms without heteroclinic curves”, Topology and Appl., 117 (2002), 335–344 | DOI | MR | Zbl
[8] Daverman R.J., Venema G.A., Embeddings in Manifolds, GSM, Amer. Math. Soc., Providence, 2009 | MR
[9] Grines V., Gurevich E., Pochinka O., “Topological classification of Morse-Smale diffeomorphisms without heteroclinic intersection”, Journal of Mathematical Sciences, 208:1 (2015), 81–90 | DOI | MR | Zbl
[10] Hirch M., Pugh C., Shub M., Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-N.Y., 1977 | DOI | MR
[11] Milnor J., “On manifolds homeomorphic to the 7-sphere”, Annals of Math., 64:2 (1956), 399–405 | DOI | MR | Zbl
[12] Robinson C., Dynamical Systems: stability, symbolic dynamics, and chaos, Studies in Adv. Math., CRC Press, Boca Raton, FL, 1999 | MR | Zbl
[13] Smale S., “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl
[14] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 66:1 (1967), 741–817 ; Uspekhi mat. nauk, 25 (1970), 113–185 | MR