On the existence of periodic orbits for continuous Morse-Smale flows
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 12-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of continuous Morse-Smale flows defined on a topological closed manifold $M^n$ of dimension $n$ which is not less than three, and such that the stable and unstable manifolds of saddle equilibrium states do not have intersection. We establish a relationship between the existence of such flows and topology of closed trajectories and topology of ambient manifold. Namely, it is proved that if $f^t$ (that is a continuous Morse-Smale flow from considered class) has $\mu$ sink and source equilibrium states and $\nu$ saddles of codimension one, and the fundamental group $\pi_1 (M ^ n)$ does not contain a subgroup isomorphic to the free product $g =\frac {1} {2} \left (\nu - \mu +2\right)$ copies of the group of integers $\mathbb {Z} $, then the flow $ f^t$ has at least one periodic trajectory.
Keywords: Morse-Smale flows, periodic orbits, heteroclinic orbits.
@article{SVMO_2016_18_1_a1,
     author = {V. Z. Grines and E. V. Zhuzhoma and S. V. Medvedev and N. A. Tarasova},
     title = {On the existence of periodic orbits for continuous {Morse-Smale} flows},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {12--16},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a1/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
AU  - S. V. Medvedev
AU  - N. A. Tarasova
TI  - On the existence of periodic orbits for continuous Morse-Smale flows
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 12
EP  - 16
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a1/
LA  - ru
ID  - SVMO_2016_18_1_a1
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%A S. V. Medvedev
%A N. A. Tarasova
%T On the existence of periodic orbits for continuous Morse-Smale flows
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 12-16
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a1/
%G ru
%F SVMO_2016_18_1_a1
V. Z. Grines; E. V. Zhuzhoma; S. V. Medvedev; N. A. Tarasova. On the existence of periodic orbits for continuous Morse-Smale flows. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 1, pp. 12-16. http://geodesic.mathdoc.fr/item/SVMO_2016_18_1_a1/

[1] Anosov D.V., “Iskhodnye ponyatiya. Elementarnaya teoriya”, Sovremennye problemy matematiki, Fundamentalnye napravleniya (Itogi nauki i tekhniki), 1, 1985, 156–204

[2] Anosov D.V., “Grubye sistemy”, Trudy MIAN SSSR, 169, 1985, 59–93

[3] Grines V.Z., Pochinka O.V., Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, Izdatelstvo RKhD, Moskva-Izhevsk, 2011

[4] Grines V.Z., Zhuzhoma E.V., Medvedev V.C., Pochinka O.V., “Globalnye attraktor i repeller diffeomorfizmov Morsa-Smeila”, Trudy MIAN, 271, 2010, 1–20

[5] Zhuzhoma E.V., Medvedev V.C., “Globalnaya dinamika sistem Morsa-Smeila”, Trudy MIAN, 261, 2008, 115–139 | Zbl

[6] Keldysh L.V., “Topologicheskie vlozheniya v evklidovo prostranstvo”, Trudy MIAN SSSR, 81, 1966, 1–184

[7] Bonatti C., Grines V., Medvedev V., Pecou E., “Three-dimensional manifolds admitting Morse-Smale diffeomorphisms without heteroclinic curves”, Topology and Appl., 117 (2002), 335–344 | DOI | MR | Zbl

[8] Daverman R.J., Venema G.A., Embeddings in Manifolds, GSM, Amer. Math. Soc., Providence, 2009 | MR

[9] Grines V., Gurevich E., Pochinka O., “Topological classification of Morse-Smale diffeomorphisms without heteroclinic intersection”, Journal of Mathematical Sciences, 208:1 (2015), 81–90 | DOI | MR | Zbl

[10] Hirch M., Pugh C., Shub M., Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-N.Y., 1977 | DOI | MR

[11] Milnor J., “On manifolds homeomorphic to the 7-sphere”, Annals of Math., 64:2 (1956), 399–405 | DOI | MR | Zbl

[12] Robinson C., Dynamical Systems: stability, symbolic dynamics, and chaos, Studies in Adv. Math., CRC Press, Boca Raton, FL, 1999 | MR | Zbl

[13] Smale S., “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl

[14] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 66:1 (1967), 741–817 ; Uspekhi mat. nauk, 25 (1970), 113–185 | MR