Left-invariant metrics of some three-dimensional Lie groups
Matematičeskie zametki SVFU, Tome 30 (2023), pp. 24-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mikhailichenko constructed a complete classification of two-dimensional geometries of maximum mobility, which contains, in addition to well-known geometries, also three geometries of the Helmholtz type (actually Helmholtz, pseudo-Helmholtz, and dual Helmholtz). Each of these geometries is specified by a function of a pair of points (an analogue of the Euclidean distance) and is a geometry of local maximum mobility, that is, it allows a three-parameter group of movements. The groups of motions of these geometries are uniquely associated with non-unimodular matrix three-dimensional Lie groups, the study of which is the subject of this article. In this work, left-invariant metrics of the studied matrix Lie groups are constructed, and Levi-Civita connections are found, as well as curvature on these Lie groups. Geodesics on such Lie groups are studied.
Keywords: geometry of local maximum mobility, left-invariant Riemannian metrics, curvature, geodesic.
@article{SVFU_2023_30_a2,
     author = {V. A. Kyrov},
     title = {Left-invariant metrics of some three-dimensional {Lie} groups},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {24--36},
     publisher = {mathdoc},
     volume = {30},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_a2/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Left-invariant metrics of some three-dimensional Lie groups
JO  - Matematičeskie zametki SVFU
PY  - 2023
SP  - 24
EP  - 36
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2023_30_a2/
LA  - ru
ID  - SVFU_2023_30_a2
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Left-invariant metrics of some three-dimensional Lie groups
%J Matematičeskie zametki SVFU
%D 2023
%P 24-36
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2023_30_a2/
%G ru
%F SVFU_2023_30_a2
V. A. Kyrov. Left-invariant metrics of some three-dimensional Lie groups. Matematičeskie zametki SVFU, Tome 30 (2023), pp. 24-36. http://geodesic.mathdoc.fr/item/SVFU_2023_30_a2/