Nonlocal problems with an integrally-disturbed A. A. Samarskii condition for third order quasi-parabolic equations
Matematičeskie zametki SVFU, Tome 30 (2023), pp. 12-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability in anisotropic Sobolev spaces of nonlocal boundary problems for the third order quasi-parabolic equations with an integrally-disturbed Samarskii condition. A uniqueness and existence theorem is proved for regular solutions (i. e. the solutions that have all generalized derivatives that were used in equation).
Mots-clés : quasi-parabolic equations, existence
Keywords: nonlocal problems, Samarsky condition, regular solution, uniqueness.
@article{SVFU_2023_30_a1,
     author = {A. I. Kozhanov and D. S. Khromchenko},
     title = {Nonlocal problems with an integrally-disturbed {A.} {A.} {Samarskii} condition for third order quasi-parabolic equations},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {12--23},
     publisher = {mathdoc},
     volume = {30},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_a1/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - D. S. Khromchenko
TI  - Nonlocal problems with an integrally-disturbed A. A. Samarskii condition for third order quasi-parabolic equations
JO  - Matematičeskie zametki SVFU
PY  - 2023
SP  - 12
EP  - 23
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2023_30_a1/
LA  - ru
ID  - SVFU_2023_30_a1
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A D. S. Khromchenko
%T Nonlocal problems with an integrally-disturbed A. A. Samarskii condition for third order quasi-parabolic equations
%J Matematičeskie zametki SVFU
%D 2023
%P 12-23
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2023_30_a1/
%G ru
%F SVFU_2023_30_a1
A. I. Kozhanov; D. S. Khromchenko. Nonlocal problems with an integrally-disturbed A. A. Samarskii condition for third order quasi-parabolic equations. Matematičeskie zametki SVFU, Tome 30 (2023), pp. 12-23. http://geodesic.mathdoc.fr/item/SVFU_2023_30_a1/