On some new uniform estimates and maximal theorems for $H^p$ spaces
Matematičeskie zametki SVFU, Tome 29 (2022), pp. 72-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain some new uniform estimates and maximal theorems in classical Hardy spaces in the unit disk related with the Bergman projection, thus extending some previously well-known inequalities on Hardy spaces.
Keywords: Bergman projection, Hardy space, unit disk, maximal theorem, analytic function.
Mots-clés : uniformestimate
@article{SVFU_2022_29_a5,
     author = {R. F. Shamoyan},
     title = {On some new uniform estimates and maximal theorems for $H^p$ spaces},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {72--76},
     publisher = {mathdoc},
     volume = {29},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_a5/}
}
TY  - JOUR
AU  - R. F. Shamoyan
TI  - On some new uniform estimates and maximal theorems for $H^p$ spaces
JO  - Matematičeskie zametki SVFU
PY  - 2022
SP  - 72
EP  - 76
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2022_29_a5/
LA  - ru
ID  - SVFU_2022_29_a5
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%T On some new uniform estimates and maximal theorems for $H^p$ spaces
%J Matematičeskie zametki SVFU
%D 2022
%P 72-76
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2022_29_a5/
%G ru
%F SVFU_2022_29_a5
R. F. Shamoyan. On some new uniform estimates and maximal theorems for $H^p$ spaces. Matematičeskie zametki SVFU, Tome 29 (2022), pp. 72-76. http://geodesic.mathdoc.fr/item/SVFU_2022_29_a5/