Weak approximation method for the Cauchy problem for a one-dimensional system of Hopf-type equations
Matematičeskie zametki SVFU, Tome 29 (2022), pp. 11-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of Hopf-type equations is obtained. The Cauchy problem for a one-dimensional system of equations of the Hopf type which arises in two-velocity hydrodynamics is considered. The existence and uniqueness of a solution to the Cauchy problem for the one-dimensional system of the Hopf type is proved by the method of weak approximation.
Keywords: two-velocity hydrodynamics, Hopf-type system, weak approximation method
Mots-clés : friction coefficient.
@article{SVFU_2022_29_a1,
     author = {B. Kh. Imomnazarov and U. {\CYRK}. Turdiev and D. {\CYRA}. Erkinova},
     title = {Weak approximation method for the {Cauchy} problem for a one-dimensional system of {Hopf-type} equations},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {11--20},
     publisher = {mathdoc},
     volume = {29},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_a1/}
}
TY  - JOUR
AU  - B. Kh. Imomnazarov
AU  - U. К. Turdiev
AU  - D. А. Erkinova
TI  - Weak approximation method for the Cauchy problem for a one-dimensional system of Hopf-type equations
JO  - Matematičeskie zametki SVFU
PY  - 2022
SP  - 11
EP  - 20
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2022_29_a1/
LA  - ru
ID  - SVFU_2022_29_a1
ER  - 
%0 Journal Article
%A B. Kh. Imomnazarov
%A U. К. Turdiev
%A D. А. Erkinova
%T Weak approximation method for the Cauchy problem for a one-dimensional system of Hopf-type equations
%J Matematičeskie zametki SVFU
%D 2022
%P 11-20
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2022_29_a1/
%G ru
%F SVFU_2022_29_a1
B. Kh. Imomnazarov; U. К. Turdiev; D. А. Erkinova. Weak approximation method for the Cauchy problem for a one-dimensional system of Hopf-type equations. Matematičeskie zametki SVFU, Tome 29 (2022), pp. 11-20. http://geodesic.mathdoc.fr/item/SVFU_2022_29_a1/