On solvability of nonlocal boundary value problem for a differential equation of composite type
Matematičeskie zametki SVFU, Tome 28 (2021), pp. 90-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability in anisotropic Sobolev spaces of nonlocal in time problems for the differential equations of composite (Sobolev) type $$u_{tt}+\left(\alpha\frac{\partial}{\partial t}+\beta\right)\Delta u+\gamma u=f(x,t),$$ $x = (x_1,\ldots , x_n) \in\Omega\subset R^n$, $t\in(0, T),$ $0 T +\infty$, $\alpha, \beta,$ and $\gamma$ are real numbers, and $f(x, t)$ is a given function. We prove theorems of existence and non-existence, uniqueness and non-uniqueness for regular solutions, those having all generalized Sobolev derivatives in the equation.
Keywords: differential equation of composite type, nonlocal problem, regular solution, uniqueness.
Mots-clés : existence
@article{SVFU_2021_28_a6,
     author = {G. I. Tarasova},
     title = {On solvability of nonlocal boundary value problem for a differential equation of composite type},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {90--100},
     publisher = {mathdoc},
     volume = {28},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_a6/}
}
TY  - JOUR
AU  - G. I. Tarasova
TI  - On solvability of nonlocal boundary value problem for a differential equation of composite type
JO  - Matematičeskie zametki SVFU
PY  - 2021
SP  - 90
EP  - 100
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2021_28_a6/
LA  - ru
ID  - SVFU_2021_28_a6
ER  - 
%0 Journal Article
%A G. I. Tarasova
%T On solvability of nonlocal boundary value problem for a differential equation of composite type
%J Matematičeskie zametki SVFU
%D 2021
%P 90-100
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2021_28_a6/
%G ru
%F SVFU_2021_28_a6
G. I. Tarasova. On solvability of nonlocal boundary value problem for a differential equation of composite type. Matematičeskie zametki SVFU, Tome 28 (2021), pp. 90-100. http://geodesic.mathdoc.fr/item/SVFU_2021_28_a6/