Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVFU_2021_28_a0, author = {I. V. Bubyakin and I. V. Gogoleva}, title = {On differential geometry of $\rho$-dimensional complexes $C^{ \rho}(1,1)$ of $m$-dimensional planes of the projective space $P^n$}, journal = {Matemati\v{c}eskie zametki SVFU}, pages = {3--16}, publisher = {mathdoc}, volume = {28}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_a0/} }
TY - JOUR AU - I. V. Bubyakin AU - I. V. Gogoleva TI - On differential geometry of $\rho$-dimensional complexes $C^{ \rho}(1,1)$ of $m$-dimensional planes of the projective space $P^n$ JO - Matematičeskie zametki SVFU PY - 2021 SP - 3 EP - 16 VL - 28 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVFU_2021_28_a0/ LA - ru ID - SVFU_2021_28_a0 ER -
%0 Journal Article %A I. V. Bubyakin %A I. V. Gogoleva %T On differential geometry of $\rho$-dimensional complexes $C^{ \rho}(1,1)$ of $m$-dimensional planes of the projective space $P^n$ %J Matematičeskie zametki SVFU %D 2021 %P 3-16 %V 28 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVFU_2021_28_a0/ %G ru %F SVFU_2021_28_a0
I. V. Bubyakin; I. V. Gogoleva. On differential geometry of $\rho$-dimensional complexes $C^{ \rho}(1,1)$ of $m$-dimensional planes of the projective space $P^n$. Matematičeskie zametki SVFU, Tome 28 (2021), pp. 3-16. http://geodesic.mathdoc.fr/item/SVFU_2021_28_a0/