Solvability of a nonlocal problem with integral conditions for third-order Sobolev-type equations
Matematičeskie zametki SVFU, Tome 27 (2020), pp. 30-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study solvability of a nonlocal problem with integral conditions for Sobolev-type differential equations of the third order. Using spectral decompositions, we prove existence and uniqueness theorems for solutions with all generalized S. L. Sobolev derivatives entering the equation.
Keywords: Sobolev-type differential equation, problem with integral conditions, regular solution, uniqueness.
Mots-clés : existence
@article{SVFU_2020_27_a2,
     author = {A. I. Kozhanov and A. V. Dyuzheva},
     title = {Solvability of a nonlocal problem with integral conditions for third-order {Sobolev-type} equations},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {30--42},
     publisher = {mathdoc},
     volume = {27},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2020_27_a2/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - A. V. Dyuzheva
TI  - Solvability of a nonlocal problem with integral conditions for third-order Sobolev-type equations
JO  - Matematičeskie zametki SVFU
PY  - 2020
SP  - 30
EP  - 42
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2020_27_a2/
LA  - ru
ID  - SVFU_2020_27_a2
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A A. V. Dyuzheva
%T Solvability of a nonlocal problem with integral conditions for third-order Sobolev-type equations
%J Matematičeskie zametki SVFU
%D 2020
%P 30-42
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2020_27_a2/
%G ru
%F SVFU_2020_27_a2
A. I. Kozhanov; A. V. Dyuzheva. Solvability of a nonlocal problem with integral conditions for third-order Sobolev-type equations. Matematičeskie zametki SVFU, Tome 27 (2020), pp. 30-42. http://geodesic.mathdoc.fr/item/SVFU_2020_27_a2/