Einstein equation on three-dimensional locally symmetric (pseudo)Riemannian manifolds with vectorial torsion
Matematičeskie zametki SVFU, Tome 26 (2019), pp. 25-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of (pseudo)Riemannian manifolds with different metric connections different from the Levi-Civita connection has become a subject of current interest lately. A metric connection with vectorial torsion (also known as a semi-symmetric connection) is a frequently considered one of them. The correlation between the conformal deformations of Riemannian manifolds and metric connections with vectorial torsion on them was established in the works of K. Yano. Namely, a Riemannian manifold admits a metric connection with vectorial torsion, the curvature tensor of which is zero, if and only if it is conformally flat. In this paper, we study the Einstein equation on three-dimensional locally symmetric (pseudo)Riemannian manifolds with metric connection with invariant vectorial torsion. We obtain a theorem stating that all such manifolds are either Einstein manifolds with respect to the Levi-Civita connection or conformally flat.
Keywords: locally symmetric space, Lie algebra, invariant (pseudo)-Riemannian metric, Einstein manifold.
Mots-clés : vectorial torsion
@article{SVFU_2019_26_a2,
     author = {P. N. Klepikov and E. D. Rodionov and O. P. Khromova},
     title = {Einstein equation on three-dimensional locally symmetric {(pseudo)Riemannian} manifolds with vectorial torsion},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {25--36},
     publisher = {mathdoc},
     volume = {26},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2019_26_a2/}
}
TY  - JOUR
AU  - P. N. Klepikov
AU  - E. D. Rodionov
AU  - O. P. Khromova
TI  - Einstein equation on three-dimensional locally symmetric (pseudo)Riemannian manifolds with vectorial torsion
JO  - Matematičeskie zametki SVFU
PY  - 2019
SP  - 25
EP  - 36
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2019_26_a2/
LA  - ru
ID  - SVFU_2019_26_a2
ER  - 
%0 Journal Article
%A P. N. Klepikov
%A E. D. Rodionov
%A O. P. Khromova
%T Einstein equation on three-dimensional locally symmetric (pseudo)Riemannian manifolds with vectorial torsion
%J Matematičeskie zametki SVFU
%D 2019
%P 25-36
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2019_26_a2/
%G ru
%F SVFU_2019_26_a2
P. N. Klepikov; E. D. Rodionov; O. P. Khromova. Einstein equation on three-dimensional locally symmetric (pseudo)Riemannian manifolds with vectorial torsion. Matematičeskie zametki SVFU, Tome 26 (2019), pp. 25-36. http://geodesic.mathdoc.fr/item/SVFU_2019_26_a2/