On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces.~II
Matematičeskie zametki SVFU, Tome 26 (2019), pp. 14-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article focuses on differential geometry of $\rho$-dimentional complexes of $C^\rho$ $m$-dimensional planes in the projective space $P^n$ that contains a finite number of developable surfaces. We find the necessary condition under which the complex $C^\rho$ contains a finite number of developable surfaces. We study the structure of the $\rho$-dimentional complexes $C^\rho$ for which $n-m$ developable surfaces belonging to the complex $C^\rho$ have one common characteristic $(m-1)$-dimensional plane along which intersect two infinitely close torso generators; such complexes are denoted by $C^\rho_\beta(1)$. Also, we determine the image of the complexes $C^\rho_\beta(1)$ on the $(m+1)(n-m)$-dimensional algebraic manifold $G(m,n)$ of the space $P^n$, where $N=\binom{m+1}{n+1}-1$ is the image of the manifold $G(m,n)$ of $m$-dimensional planes in the projective space $P^n$ under the Grassmann mapping.
Keywords: Grassmann manifold, complexes of multidimensional planes, Segre manifold.
@article{SVFU_2019_26_a1,
     author = {I. V. Bubyakin},
     title = {On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable {surfaces.~II}},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {14--24},
     publisher = {mathdoc},
     volume = {26},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2019_26_a1/}
}
TY  - JOUR
AU  - I. V. Bubyakin
TI  - On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces.~II
JO  - Matematičeskie zametki SVFU
PY  - 2019
SP  - 14
EP  - 24
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2019_26_a1/
LA  - ru
ID  - SVFU_2019_26_a1
ER  - 
%0 Journal Article
%A I. V. Bubyakin
%T On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces.~II
%J Matematičeskie zametki SVFU
%D 2019
%P 14-24
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2019_26_a1/
%G ru
%F SVFU_2019_26_a1
I. V. Bubyakin. On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces.~II. Matematičeskie zametki SVFU, Tome 26 (2019), pp. 14-24. http://geodesic.mathdoc.fr/item/SVFU_2019_26_a1/