Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVFU_2019_26_a1, author = {I. V. Bubyakin}, title = {On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable {surfaces.~II}}, journal = {Matemati\v{c}eskie zametki SVFU}, pages = {14--24}, publisher = {mathdoc}, volume = {26}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVFU_2019_26_a1/} }
TY - JOUR AU - I. V. Bubyakin TI - On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces.~II JO - Matematičeskie zametki SVFU PY - 2019 SP - 14 EP - 24 VL - 26 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVFU_2019_26_a1/ LA - ru ID - SVFU_2019_26_a1 ER -
%0 Journal Article %A I. V. Bubyakin %T On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces.~II %J Matematičeskie zametki SVFU %D 2019 %P 14-24 %V 26 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVFU_2019_26_a1/ %G ru %F SVFU_2019_26_a1
I. V. Bubyakin. On the structure of some complexes of $m$-dimensional planes in the projective space $P^n$ containing a finite number of developable surfaces.~II. Matematičeskie zametki SVFU, Tome 26 (2019), pp. 14-24. http://geodesic.mathdoc.fr/item/SVFU_2019_26_a1/