On solution to the simplest functional equation in curvilinear-band-type domain
Matematičeskie zametki SVFU, Tome 24 (2017), pp. 87-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the functional equation $u(\xi + 1) - u(\xi) = d(\xi), \xi\in\Pi,$, in the region $\Pi\subset C$ of “curvilinear band” type. For sufficiently fast decreasing at infinity and holomorphic within the domain $\Pi$ functions $d(\xi)$ the existence of a holomorphic and bounded solution is shown, the uniqueness of the solutions is investigated. We also obtained precise estimates of the constructed solutions and its asymptotic behavior.
Keywords: semihyperbolic maps, functional equations, analytic classification.
@article{SVFU_2017_24_a7,
     author = {P. A. Shaikhullina},
     title = {On solution to the simplest functional equation in curvilinear-band-type domain},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {24},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_a7/}
}
TY  - JOUR
AU  - P. A. Shaikhullina
TI  - On solution to the simplest functional equation in curvilinear-band-type domain
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 87
EP  - 95
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_a7/
LA  - ru
ID  - SVFU_2017_24_a7
ER  - 
%0 Journal Article
%A P. A. Shaikhullina
%T On solution to the simplest functional equation in curvilinear-band-type domain
%J Matematičeskie zametki SVFU
%D 2017
%P 87-95
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_a7/
%G ru
%F SVFU_2017_24_a7
P. A. Shaikhullina. On solution to the simplest functional equation in curvilinear-band-type domain. Matematičeskie zametki SVFU, Tome 24 (2017), pp. 87-95. http://geodesic.mathdoc.fr/item/SVFU_2017_24_a7/

[1] Shcherbakov A. A., “On germs of mappings analytically non-equivalent to their normal form”, Funkt. Anal. Pril., 16:2 (1982), 94–95 | MR

[2] Voronin S. M., Fomina P. A., “Sectorial normalization of semihyperbolic maps”, Vestn. Chelyabinsk. Gos. Univ., 2013, no. 16, 94–113

[3] Ueda T., “Local structure of analytic transformations of two complex variables I.”, J. Math. Kyoto Univ., 31:3 (1991), 695–711 | DOI | MR | Zbl

[4] Shaykhullina P. A., “Formal classification of typical germs of semihyperbolic mappings”, Mat. Zamet. SVFU, 22:4 (2015), 79–90 | Zbl