The stationary Galerkin method applied to the first boundary value problem for a higher order equation with changing time direction
Matematičeskie zametki SVFU, Tome 24 (2017), pp. 67-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of the unique regular solution to the first boundary value problem for the higher order equation with changing time direction in the Sobolev space. The stationary Galerkin method is applied for which the estimate of the rate of convergence is obtained in the terms of the eigenvalues to the self-adjoint spectral problem for the quasielliptic equation.
Keywords: higher-order equation, changing time direction, first boundary value problem, regular solvability, Sobolev space, stationary Galerkin method, convergence rate estimate.
@article{SVFU_2017_24_a5,
     author = {V. E. Fedorov},
     title = {The stationary {Galerkin} method applied to the first boundary value problem for a higher order equation with changing time direction},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {67--75},
     publisher = {mathdoc},
     volume = {24},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_a5/}
}
TY  - JOUR
AU  - V. E. Fedorov
TI  - The stationary Galerkin method applied to the first boundary value problem for a higher order equation with changing time direction
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 67
EP  - 75
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_a5/
LA  - ru
ID  - SVFU_2017_24_a5
ER  - 
%0 Journal Article
%A V. E. Fedorov
%T The stationary Galerkin method applied to the first boundary value problem for a higher order equation with changing time direction
%J Matematičeskie zametki SVFU
%D 2017
%P 67-75
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_a5/
%G ru
%F SVFU_2017_24_a5
V. E. Fedorov. The stationary Galerkin method applied to the first boundary value problem for a higher order equation with changing time direction. Matematičeskie zametki SVFU, Tome 24 (2017), pp. 67-75. http://geodesic.mathdoc.fr/item/SVFU_2017_24_a5/

[1] Egorov I. E., “On the first boundary value problem for the one nonclassical equation”, Mat. Zametki, 42:3 (1987), 403–411 | MR

[2] Egorov I. E., “On the boundary value problem E for the one class of the elliptic-parabolic equations”, Primenenie Metodov Funktsional'nogo Analiza v Uravneniyakh Matematicheskoy Fiziki, Inst. Mat. SO AN SSSR, Novosibirsk, 1987, 78–84

[3] Egorov I. E., “Boundary value problem for a one higher order equation with varying time direction”, Dokl. AN SSSR, 30:6 (1988), 1301–1304

[4] Egorov I. E., Fedorov V. E., High-Order Nonclassical Equations of Mathematical Physics, Vychisl. Tsentr SO RAN, Novosibirsk, 1995 | MR

[5] Egorov I. E., “On one boundary value problem for an equation with varying time direction”, Mat. Zamet. YaGU, 5:2 (1998), 77–84

[6] Chueshev A. V., Solvability of the Boundary Value Problem for the Mixed Type Equations of Higher Order, Novosib. Gos. Univ., Novosibirsk, 2001

[7] Fedorov V. E., “Nonlocal boundary value problem for a higher order equation with varying time direction”, Mat. Zamet. YaGU, 9:2 (2002), 111–116 | Zbl

[8] L'vov A. P., Nonlocal Boundary Value Problems for a Nonclassical Equations of Mathematical Physics with Varying Time Direction, Yakutsk. Gos. Univ., Yakutsk, 2006

[9] Efimova E. S., “Application of the stationary Galerkin method to a nonclassical equation of higher order with varying time direction”, Mat. Zamet. YaGU, 19:2 (2012), 32–38 | Zbl

[10] Egorov I. E., Fedorov V. E., Tikhonova I. M., Efimova E. S., “The Galerkin method for nonclassical equations of mathematical physics”, AIP Conference Proceedings, 1907 (2017), 020011 | DOI

[11] Fedorov V. E., “Error estimate of the nonstationary Galerkin method for a higher order equation with changing time direction”, AIP Conference Proceedings, 1907 (2017), 030010 | DOI

[12] Besov O. V., Il'in V. P., Nikol'skiy S. M., Integral Presentation of Functions and Embedded Theorems, Nauka, Moscow, 1977 | MR

[13] Egorov I. E., Efimova E. S., “Stationary Galerkin method for a parabolic equation with varying time direction”, Mat. Zamet. YaGU, 18:2 (2011), 41–46 | Zbl

[14] Egorov I. E., Efimova E. S., “Error estimate of the stationary Galerkin method for a degenerated parabolic equation”, Mat. Zamet. YaGU, 19:1 (2012), 27–33 | Zbl

[15] Egorov I. E., Efimova E. S., “On the stationary Galerkin method for a nonlinear nonclassical equation of the third order of time variable with varying time direction”, Mat. Zamet. SVFU, 21:3 (2014), 19–27 | Zbl

[16] Efimova E. S., Egorov I. E., Kolesova M.S., “Error estimate of the stationary Galerkin method for the semilinear parabolic equation with alternating time direction”, Vestn. Novosib. Gos. Univ., Ser. Mat., Mekh., Inf., 14:3 (2014), 43–49 | Zbl

[17] Egorov I. E., “On the modified Galerkin method for a parabolic equation with varying time direction”, Uzbek. Mat. Zhurn., 2013, no. 3, 33–40

[18] Egorov I. E., Efimova E. S., “Modified Galerkin method for a semilinear parabolic equation with varying time direction”, Sib. Zhurn. Chist. Prikl. Mat., 16:2 (2016), 6–15 | MR | Zbl