Parabolic equations of the fourth order with changing time direction with complete matrix of gluing conditions
Matematičeskie zametki SVFU, Tome 24 (2017), pp. 52-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study solvability of boundary value problems for the fourth order parabolic equations with changing time direction in case of complete matrix of gluing conditions. For boundary value problems for equations with changing time direction, the smoothness of the initial and boundary data does not guarantee that the solution belongs to a Holder space. In the simplest cases, S. A. Tersenov obtained necessary and sufficient conditions for solvability of such problems for second order parabolic equations in the spaces $H^{p,p/2}_{x\,t}$ for $p>2$. Moreover, the solvability (orthogonality) condition was written in an explicit form. Note that in the one-dimensional case the number of orthogonality conditions is finite, while in the multidimensional case the number of orthogonality conditions of the integral character is infinite. We show that the Holder solution classes of boundary value problems for the fourth order parabolic equations with changing time direction, as well as the number of solvability conditions, depend on the form of the matrix of gluing conditions with real coefficients.
Keywords: solvability, boundary value problems, parabolic equations with changing time direction, matrix of gluing conditions, Holder space.
Mots-clés : singular equations
@article{SVFU_2017_24_a4,
     author = {V. G. Markov and S. V. Popov},
     title = {Parabolic equations of the fourth order with changing time direction with complete matrix of gluing conditions},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {52--66},
     publisher = {mathdoc},
     volume = {24},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_a4/}
}
TY  - JOUR
AU  - V. G. Markov
AU  - S. V. Popov
TI  - Parabolic equations of the fourth order with changing time direction with complete matrix of gluing conditions
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 52
EP  - 66
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_a4/
LA  - ru
ID  - SVFU_2017_24_a4
ER  - 
%0 Journal Article
%A V. G. Markov
%A S. V. Popov
%T Parabolic equations of the fourth order with changing time direction with complete matrix of gluing conditions
%J Matematičeskie zametki SVFU
%D 2017
%P 52-66
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_a4/
%G ru
%F SVFU_2017_24_a4
V. G. Markov; S. V. Popov. Parabolic equations of the fourth order with changing time direction with complete matrix of gluing conditions. Matematičeskie zametki SVFU, Tome 24 (2017), pp. 52-66. http://geodesic.mathdoc.fr/item/SVFU_2017_24_a4/

[1] Popov S. V., Potapova S. V., “Fourth order parabolic equations with changing time direction with a general matrix of the gluing conditions”, Mat. Zamet. YaGU, 17:1 (2010), 109–123 | Zbl

[2] Popov S. V., Potapova S. V., “Holder classes of solutions to sixth order parabolic equations with changing time direction with a general matrix of the gluing conditions”, Mat. Zamet. YaGU, 18:1 (2011), 94–107 | Zbl

[3] Popov S. V., Sinyavskii A. G., “Issledovanie kraevykh zadach dlya parabolicheskikh uravnenii chetvertogo poryadka s menyayuschimsya napravleniem vremeni s polnoi matritsei uslovii skleivaniya”, Neklassicheskie uravneniya matematicheskoi fiziki: Sb. nauch. rabot, ed. Kozhanov A. I., Izd-vo IM SO RAN, Novosibirsk, 2012, 167–176

[4] Popov S. V., Markov V. G., “Boundary value problems for parabolic equations of high order with a changing time direction”, J. Physics Conf. Series, IOP Conf. Series, 894, no. 1, 2017, 012075 | DOI

[5] Gakhov F. D., Boundary Value Problems, Nauka, Moscow, 1977 | MR

[6] Muskhelishvili N. I., Singular Integral Equations, Nauka, Moscow, 1968 | MR

[7] Tersenov S. A., Parabolic Equations with Changing Time Direction, Nauka, Novosibirsk, 1985 | MR

[8] Monakhov V. N., Boundary Value Problems with Free Boundaries for Systems of Elliptic Equations, Nauka, Novosibirsk, 1977 | MR

[9] Vekua N. P., Systems of Singular Integral Equations, Nauka, Moscow, 1968

[10] Pini B., “Sul probleme fondamentale di valori contorno per una classe di equazioni paraboliche lineari”, Ann. mat. pura ed appl., 43 (1957), 261–297 | DOI | MR | Zbl

[11] Pini B., “Su una equazione paraboliche non lineare del quarto ordine”, Rend. sem. fac. sc. Univ. Cagliari, 27:3-4 (1957), 136–168 | MR

[12] Solonnikov V. A., “About a boundary value problems for linear parabolic systems of differential equations of general form”, Proc. Math. Inst. V.A. Steklov, 83, 1965, 3–163

[13] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and Quasilinear Parabolic Type Equations, Nauka, Moscow, 1967 | MR

[14] Smirnov M. M., Mixed Type Equations, Vyssh. Shkola, Moscow, 1985 | MR

[15] Popov S. V., “O gladkosti reshenii parabolicheskikh uravnenii s menyayuschimsya napravleniem evolyutsii”, Dokl. AN, 400:1 (2005), 29–31 | MR