An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body
Matematičeskie zametki SVFU, Tome 24 (2017), pp. 37-51

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model describing equilibrium of cracked three-dimensional bodies with rigid thin stiffener on the outer boundary is studied. Inequality type boundary condition is imposed at the crack faces providing a mutual non-penetration between crack faces. We analyze the dependence of solutions on the size of the thin rigid stiffener reinforcing the cracked body on the outer edge. Existence of the solution to the optimal control problem is proved. For this problem the cost functional is defined by an arbitrary continuous functional, while the size parameter of the thin rigid stiffener is chosen as a control parameter.
Keywords: variational inequality, optimal control problem, nonpenetration, non-linear boundary conditions, crack.
@article{SVFU_2017_24_a3,
     author = {N. P. Lazarev and V. V. \`Everstov},
     title = {An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {37--51},
     publisher = {mathdoc},
     volume = {24},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_a3/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - V. V. Èverstov
TI  - An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 37
EP  - 51
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_a3/
LA  - ru
ID  - SVFU_2017_24_a3
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A V. V. Èverstov
%T An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body
%J Matematičeskie zametki SVFU
%D 2017
%P 37-51
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_a3/
%G ru
%F SVFU_2017_24_a3
N. P. Lazarev; V. V. Èverstov. An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body. Matematičeskie zametki SVFU, Tome 24 (2017), pp. 37-51. http://geodesic.mathdoc.fr/item/SVFU_2017_24_a3/