Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVFU_2017_24_a3, author = {N. P. Lazarev and V. V. \`Everstov}, title = {An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body}, journal = {Matemati\v{c}eskie zametki SVFU}, pages = {37--51}, publisher = {mathdoc}, volume = {24}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_a3/} }
TY - JOUR AU - N. P. Lazarev AU - V. V. Èverstov TI - An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body JO - Matematičeskie zametki SVFU PY - 2017 SP - 37 EP - 51 VL - 24 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVFU_2017_24_a3/ LA - ru ID - SVFU_2017_24_a3 ER -
%0 Journal Article %A N. P. Lazarev %A V. V. Èverstov %T An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body %J Matematičeskie zametki SVFU %D 2017 %P 37-51 %V 24 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVFU_2017_24_a3/ %G ru %F SVFU_2017_24_a3
N. P. Lazarev; V. V. Èverstov. An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body. Matematičeskie zametki SVFU, Tome 24 (2017), pp. 37-51. http://geodesic.mathdoc.fr/item/SVFU_2017_24_a3/
[1] Morozov N. F., Mathematical Problems of the Theory of Cracks, Nauka, Moscow, 1984 | MR
[2] Khludnev A. M., Elasticity Problems in Nonsmooth Domains, Fizmatlit, Moscow, 2010
[3] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT Press, Southampton; Boston, 2000
[4] Khludnev A. M., “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A Solids, 32:1 (2012), 69–75 | DOI | MR | Zbl
[5] Khludnev A. M., Leugering G. R., “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl
[6] Kovtunenko V. A., “Shape sensitivity of curvilinear cracks on interface to non-linear perturbations”, Z. Angew. Math. Phys., 54:3 (2003), 410–423 | DOI | MR | Zbl
[7] Lazarev N. P., Itou H., Neustroeva N. V., “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Ind. Appl. Math., 33:1 (2016), 63–80 | DOI | MR | Zbl
[8] Lazarev N., “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040 | DOI | MR | Zbl
[9] Lazarev N. P., “Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Z. Angew. Math. Mech., 96:4 (2016), 509–518 | DOI | MR
[10] Khludnev A., Popova T., “Junction problem for rigid and semirigid inclusions in elastic bodies”, Arch. Appl. Mech., 86:9 (2016), 1565–1577 | DOI | MR
[11] Khludnev A. M., Popova T. S., “On the mechanical interplay between Timoshenko and semirigid inclusions embedded in elastic bodies”, Z. Angew. Math. Mech., 97:11 (2017), 1406–1417 | MR
[12] Khludnev A. M., Shcherbakov V. V., “A note on crack propagation paths inside elastic bodies”, Appl. Math. Let., 79 (2018), 80–84 | DOI | MR
[13] Shcherbakov V., “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:71 (2016) | MR | Zbl
[14] Shcherbakov V., “Energy release rates for interfacial cracks in elastic bodies with thin semirigid inclusions”, Z. Angew. Math. Phys., 68:26 (2017) | MR | Zbl
[15] Pyatkina E. V., “Optimal control of the shape of a layer shape in the equilibrium problem of elastic bodies with overlapping domains”, J. Appl. Indust. Math., 10:3 (2016), 435–443 | DOI | MR | Zbl
[16] Knees D., Schroder A., “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints”, Math. Meth. Appl. Sci., 35:15 (2012), 1859–1884 | DOI | MR | Zbl
[17] Rudoy E., “Domain decomposition method for crack problems with nonpenetration condition”, ESAIM-Math. Model. Num., 50:4 (2016), 995–1009 | DOI | MR | Zbl
[18] Hintermuller M., Kovtunenko V. A., “From shape variation to topological changes in constrained minimization: A velocity method-based concept”, Optim. Method Softw., 26:4-5 (2011), 513–532 | DOI | MR | Zbl
[19] Kovtunenko V. A., Leugering G., “A shape-topological control problem for nonlinear crack defect interaction: The antiplane variational model”, SIAM. J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl
[20] Khludnev A., Negri M., “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. und Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl
[21] Rudoy E. M., “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion”, J. Appl. Indust. Math., 10:2 (2016), 264–276 | DOI | MR
[22] Khludnev A. M., Faella L., Popova T. S., “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Mathematics and Mechanics of Solids, 22:4 (2017), 1–14 | DOI | MR
[23] Neustroeva N. V., “An equilibrium problem for an elastic plate with an inclined crack on the boundary of a rigid inclusion”, J. Appl. Ind. Math., 9:3 (2015), 402–411 | MR | Zbl
[24] Popova T., Rogerson G. A., “On the problem of a thin rigid inclusion embedded in a Maxwell material”, Z. Angew. Math. Phys., 67:105 (2016) | MR | Zbl
[25] Khludnev A. M., “Shape control of thin rigid inclusions and cracks in elastic bodies”, Archive of Applied Mechanics, 83:10 (2013), 1493–1509 | DOI | MR | Zbl
[26] Rudoy E. M., Lazarev N. P., “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334 (2018), 18–26 | DOI | MR | Zbl
[27] Rudoy E. M., “On numerical solving a rigid inclusions problem in 2D elasticity”, Z. Angew. Math. Phys., 68:1 (2017), 19 | DOI | MR | Zbl
[28] Mura T., Micromechanics of defects in solids, Martinus Nijhoff Publ., Dordrecht, 1987
[29] Leugering G., Sokolowski J., Zochowski A., “Control of crack propagation by shape-topological optimization”, Discrete and Continuous Dynamical Systems. Ser. A (DCDS-A), 35:6 (2015), 2625–2657 | DOI | MR | Zbl
[30] Dal Corso F., Bigoni D., Gei M., “The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I. Full-field solution and asymptotics”, J. Mech. Phys. Solids, 56 (2008), 815–838 | DOI | MR | Zbl
[31] Zohdi T. I., Wriggers P., An introduction to computational micromechanics, Springer-Verl., Heidelberg, 2008 | MR | Zbl
[32] Salgado N. K., Aliabadi M. H., “The application of the dual boundary element method to the analysis of cracked stiffened panels”, Eng. Fract. Mech., 54:1 (1996), 91–105 | DOI
[33] Annin B. D., Kovtunenko V. A., Sadovskii V. M., “Variational and hemivariational inequalities in mechanics of elastoplastic, granular media, and quasibrittle cracks”, Springer Proceedings in Mathematics and Statistics, 121 (2015), 49–56 | DOI | MR | Zbl
[34] Mikhailov V. P., Partial Differential Equations, Mir, Moscow, 1978 | MR
[35] Maz'ya V. G., Sobolev Spaces, Springer Ser. Soviet Math., Springer-Verl, Berlin, 1985 | MR | Zbl