Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVFU_2017_24_a2, author = {I. E. Egorov and E. S. Efimova}, title = {A boundary value problem for the third-order equation not solvable with respect to the highest-order derivative}, journal = {Matemati\v{c}eskie zametki SVFU}, pages = {28--36}, publisher = {mathdoc}, volume = {24}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_a2/} }
TY - JOUR AU - I. E. Egorov AU - E. S. Efimova TI - A boundary value problem for the third-order equation not solvable with respect to the highest-order derivative JO - Matematičeskie zametki SVFU PY - 2017 SP - 28 EP - 36 VL - 24 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVFU_2017_24_a2/ LA - ru ID - SVFU_2017_24_a2 ER -
%0 Journal Article %A I. E. Egorov %A E. S. Efimova %T A boundary value problem for the third-order equation not solvable with respect to the highest-order derivative %J Matematičeskie zametki SVFU %D 2017 %P 28-36 %V 24 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVFU_2017_24_a2/ %G ru %F SVFU_2017_24_a2
I. E. Egorov; E. S. Efimova. A boundary value problem for the third-order equation not solvable with respect to the highest-order derivative. Matematičeskie zametki SVFU, Tome 24 (2017), pp. 28-36. http://geodesic.mathdoc.fr/item/SVFU_2017_24_a2/
[1] Yakubov S. Y., Linear Differential-Operator Equations and Their Applications, Izdat. ELM, Baku, 1985
[2] Egorov I. E., Fedorov V. E., Nonclassical Higher-Order Equations in Mathematical Physics, Izdat. Vychisl. Tsentra SO RAN, Novosibirsk, 1995 | MR
[3] Demidenko G. V., Uspenskiy S. V., Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Nauchn. Kniga, Novosibirsk, 1998 | MR
[4] Egorov I. E., Pyatkov S. G., Popov S. V., Nonclassical Differential-Operator Equations, Nauka, Novosibirsk, 2000 | MR
[5] Kozhanov A. I., “Boundary value problems for some classes of higher-order equations not solvable with respect to the highest-order derivative”, Sib. Math. J., 35:2 (1994), 361–376
[6] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Equations of Sobolev Type, Fizmatlit, Moscow, 2007
[7] Lions J.-L., Some Methods of Solving Nonlinear Boundary Value Problems, Mir, Moscow, 1973 | MR
[8] Ficera G., “The unified theory of boundary value problems for elliptic-parabolic equations”, Math., 7:6 (1963), 99–121
[9] Nakhushev A. M., Problems with Shift for the Equations in Partial Derivatives, Nauka, Moscow, 2006
[10] Beals R., Protopescu V., “Half-range completeness for the Fokker-Planck equation”, J. Statist. Phys., 32:3 (1983), 565–584 | DOI | MR | Zbl
[11] Kozhanov A. I., “The existence of regular solutions of the first boundary value Problem for one class of Sobolev type equations with alternating direction”, Mat. Zamet. YaGU, 4:2 (1997), 39–48 | Zbl
[12] Kozhanov A. I. Potapova S. V., “The Dirichlet problem for a class of composite type equations with a discontinuous coefficient of the highest derivative”, Dal'nevost. Mat. Zhurn., 14:1 (2014), 48–65 | MR | Zbl
[13] Ladyzhenskaya O. A., Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 | MR
[14] Vinogradova P. V., Zarubin A. G., “Error estimation of Galerkin method for non-stationary equations”, J. Comput. Math. Math. Phys., 49:9 (2009), 1643–1651 | MR | Zbl
[15] Egorov I. E., “On a modified Galerkin method for a parabolic equation with alternating time direction”, Uzbek Math. J., 2013, no. 3, 33–40