Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVFU_2017_24_a0, author = {I. V. Bubyakin}, title = {About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces}, journal = {Matemati\v{c}eskie zametki SVFU}, pages = {3--16}, publisher = {mathdoc}, volume = {24}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/} }
TY - JOUR AU - I. V. Bubyakin TI - About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces JO - Matematičeskie zametki SVFU PY - 2017 SP - 3 EP - 16 VL - 24 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/ LA - ru ID - SVFU_2017_24_a0 ER -
%0 Journal Article %A I. V. Bubyakin %T About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces %J Matematičeskie zametki SVFU %D 2017 %P 3-16 %V 24 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/ %G ru %F SVFU_2017_24_a0
I. V. Bubyakin. About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces. Matematičeskie zametki SVFU, Tome 24 (2017), pp. 3-16. http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/