About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces
Matematičeskie zametki SVFU, Tome 24 (2017), pp. 3-16

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the projective differential geometry of $m$-dimensional plane submanifolds of manifolds $G(m, n)$ in projective space $P^n$ containing a finite number of developable surfaces. To study such submanifolds we use the Grassmann mapping of manifolds $G(m, n)$ of $m$-dimensional planes in projective space $P^n$ to $(m + 1)(n-m)$-dimensional algebraic manifold $\Omega(m, n)$ of space $P^N$, where $N=\left(\begin{array}{c}m+1\\n+1\\\end{array}\right)-1$. This mapping combined with the method of external Cartan's forms and moving frame method made it possible to determine the dependence of considered manifolds structure and the configuration of the $(m - 1)$-dimensional characteristic planes and $(m + 1)$-dimensional tangential planes of developable surfaces that belong to considered manifolds.
Keywords: Grassmann manifold, complexes of multidimensional planes, Grassmann mapping, Segre manifold.
@article{SVFU_2017_24_a0,
     author = {I. V. Bubyakin},
     title = {About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {24},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/}
}
TY  - JOUR
AU  - I. V. Bubyakin
TI  - About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 3
EP  - 16
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/
LA  - ru
ID  - SVFU_2017_24_a0
ER  - 
%0 Journal Article
%A I. V. Bubyakin
%T About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces
%J Matematičeskie zametki SVFU
%D 2017
%P 3-16
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/
%G ru
%F SVFU_2017_24_a0
I. V. Bubyakin. About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces. Matematičeskie zametki SVFU, Tome 24 (2017), pp. 3-16. http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/