About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces
Matematičeskie zametki SVFU, Tome 24 (2017), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the projective differential geometry of $m$-dimensional plane submanifolds of manifolds $G(m, n)$ in projective space $P^n$ containing a finite number of developable surfaces. To study such submanifolds we use the Grassmann mapping of manifolds $G(m, n)$ of $m$-dimensional planes in projective space $P^n$ to $(m + 1)(n-m)$-dimensional algebraic manifold $\Omega(m, n)$ of space $P^N$, where $N=\left(\begin{array}{c}m+1\\n+1\\\end{array}\right)-1$. This mapping combined with the method of external Cartan's forms and moving frame method made it possible to determine the dependence of considered manifolds structure and the configuration of the $(m - 1)$-dimensional characteristic planes and $(m + 1)$-dimensional tangential planes of developable surfaces that belong to considered manifolds.
Keywords: Grassmann manifold, complexes of multidimensional planes, Grassmann mapping, Segre manifold.
@article{SVFU_2017_24_a0,
     author = {I. V. Bubyakin},
     title = {About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {24},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/}
}
TY  - JOUR
AU  - I. V. Bubyakin
TI  - About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces
JO  - Matematičeskie zametki SVFU
PY  - 2017
SP  - 3
EP  - 16
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/
LA  - ru
ID  - SVFU_2017_24_a0
ER  - 
%0 Journal Article
%A I. V. Bubyakin
%T About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces
%J Matematičeskie zametki SVFU
%D 2017
%P 3-16
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/
%G ru
%F SVFU_2017_24_a0
I. V. Bubyakin. About the structure of complexes of $m$-dimensional planes in projective space $P^n$ containing a finite number of developable surfaces. Matematičeskie zametki SVFU, Tome 24 (2017), pp. 3-16. http://geodesic.mathdoc.fr/item/SVFU_2017_24_a0/

[1] Zak F. L., Rep. NIR No. 04–01–00613 (Russian Foundation for Basic Research)

[2] Arnold V. I., “Complex Lagrangian Grassmannian”, Funkts. Anal. Prilozh., 34:3 (2000), 63–65 | DOI | MR | Zbl

[3] Arnold V. I., “Lagrangian Grassmannian of a quarternion hypersymplectic space”, Funkts. Anal. Prilozh., 35:1 (2001), 74–77 | DOI | MR | Zbl

[4] Arkani-Hamed N., Bourjaily J. L., Cachazo, F., Goncharov A B., Postnikov A., Trnka J., Scattering amplitudes and the positive Grassmannian, 2012, arXiv: 1212.5605 | MR

[5] Arkani-Hamed N., Trnka J., “The amplituhedron”, J. High Energy Physics, 2014:10 (2014), 30 | DOI | MR

[6] Gelfand I. M., Gindikin S. G., Graev M. I., Selected Topics in Integral Geometry, Transl. Math. Monogr., 220, Amer. Math. Soc., Providence, RI, 2007 | MR | MR

[7] Akivis M. A., “On the differential geometry of a Grassmann manifold”, Tensor, 38 (1982), 273–282 | MR | Zbl

[8] Finikov S. P., Congruence Theory, Gostehizdat, Moscow, 1950

[9] Bubyakin I. V., Geometry of Five-dimensional Complexes of Two-dimensional Planes, Nauka, Novosibirsk, 2001

[10] Landsberg J. M., Algebraic geometry and projective differential geometry, Lect. Notes Series. Seoul, 45, Seoul National Univ., Seoul | MR | Zbl

[11] Room T. G., The geometry of determinantal loci, Cambridge, 1938