Modified duality scheme for numerical simulation of the contact between elastic bodies
Matematičeskie zametki SVFU, Tome 23 (2016), pp. 99-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of unilateral contact of two elastic bodies, a static problem in displacements. Bodies are influenced by volume and surface forces, while frictional forces are absent. Justification of use of the modified Lagrangian functionals method is given. We provide the results of numerical calculations.
Keywords: Lagrangian functional, finite element method, duality scheme, elastic contact.
@article{SVFU_2016_23_a8,
     author = {A. Zhiltsov},
     title = {Modified duality scheme for numerical simulation of the contact between elastic bodies},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {99--114},
     publisher = {mathdoc},
     volume = {23},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a8/}
}
TY  - JOUR
AU  - A. Zhiltsov
TI  - Modified duality scheme for numerical simulation of the contact between elastic bodies
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 99
EP  - 114
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_a8/
LA  - ru
ID  - SVFU_2016_23_a8
ER  - 
%0 Journal Article
%A A. Zhiltsov
%T Modified duality scheme for numerical simulation of the contact between elastic bodies
%J Matematičeskie zametki SVFU
%D 2016
%P 99-114
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_a8/
%G ru
%F SVFU_2016_23_a8
A. Zhiltsov. Modified duality scheme for numerical simulation of the contact between elastic bodies. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 99-114. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a8/

[1] Duvaut G. and Lions J. L., Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., 219, Springer-Verl., Berlin–Heidelberg, 1976 | DOI | MR | Zbl

[2] Hlávaček I., Haslinger J., Nečas J., and Lovišek J., Solution of Variational Inequalities in Mechanics, Appl. Math. Sci., 66, Springer-Verl., New York, 1988 | MR | Zbl

[3] Kustova V. I., “A method for the solution of the contact problem with weakly coercive operator”, Optimizatsiya, 53:36 (1985), 31–48 | MR | Zbl

[4] Vikhtenko E. M., Woo G. S., and Namm R. V, “The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals”, Dal’nevost. Mat. Zh., 14:1 (2014), 6–17 | MR | Zbl

[5] Zhil'tsov A. V. and Namm R. V., “The Method of Lagrange Multipliers for Solving a Model Crack Problem”, Yak. Math. Journal, 22:1 (2015), 80–89 | MR | Zbl

[6] Vikhtenko E. M. and Namm R. V., “Duality scheme for solving the semicoercive Signorini problem with friction”, Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007), 2023–2036 | MR

[7] Vikhtenko E. M., Woo G. S., and Namm R. V, “On the convergence of the Uzawa method with a modified Lagrangian functional for variational inequalities in mechanics”, Zh. Vychisl. Mat. Mat. Fiz., 10:8 (2010), 1357–1366 | MR

[8] Polyak B. T., Introduction to Optimization, Nauka, Moscow, 1983 | MR

[9] Zhiltsov A. V. and Namm R. V., “The Lagrange multiplier method in the finite convex programming problem”, Dal’nevost. Mat. Zh., 15:1 (2015), 53–60 | MR | Zbl