Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVFU_2016_23_a8, author = {A. Zhiltsov}, title = {Modified duality scheme for numerical simulation of the contact between elastic bodies}, journal = {Matemati\v{c}eskie zametki SVFU}, pages = {99--114}, publisher = {mathdoc}, volume = {23}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a8/} }
A. Zhiltsov. Modified duality scheme for numerical simulation of the contact between elastic bodies. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 99-114. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a8/
[1] Duvaut G. and Lions J. L., Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., 219, Springer-Verl., Berlin–Heidelberg, 1976 | DOI | MR | Zbl
[2] Hlávaček I., Haslinger J., Nečas J., and Lovišek J., Solution of Variational Inequalities in Mechanics, Appl. Math. Sci., 66, Springer-Verl., New York, 1988 | MR | Zbl
[3] Kustova V. I., “A method for the solution of the contact problem with weakly coercive operator”, Optimizatsiya, 53:36 (1985), 31–48 | MR | Zbl
[4] Vikhtenko E. M., Woo G. S., and Namm R. V, “The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals”, Dal’nevost. Mat. Zh., 14:1 (2014), 6–17 | MR | Zbl
[5] Zhil'tsov A. V. and Namm R. V., “The Method of Lagrange Multipliers for Solving a Model Crack Problem”, Yak. Math. Journal, 22:1 (2015), 80–89 | MR | Zbl
[6] Vikhtenko E. M. and Namm R. V., “Duality scheme for solving the semicoercive Signorini problem with friction”, Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007), 2023–2036 | MR
[7] Vikhtenko E. M., Woo G. S., and Namm R. V, “On the convergence of the Uzawa method with a modified Lagrangian functional for variational inequalities in mechanics”, Zh. Vychisl. Mat. Mat. Fiz., 10:8 (2010), 1357–1366 | MR
[8] Polyak B. T., Introduction to Optimization, Nauka, Moscow, 1983 | MR
[9] Zhiltsov A. V. and Namm R. V., “The Lagrange multiplier method in the finite convex programming problem”, Dal’nevost. Mat. Zh., 15:1 (2015), 53–60 | MR | Zbl