A problem with an integral condition in the hyperbolic part for a characteristically loaded hyperbolic-parabolic equation
Matematičeskie zametki SVFU, Tome 23 (2016), pp. 91-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the uniqueness and existence of solutions of a model characteristic ally loaded mixed hyperbolic-parabolic equation. The Tricomi method is applied for establishing the solution uniqueness and the existence is proved with the use of the integral equation method.
Keywords: loaded equation, mixed type equation, hyperbolic-parabolic equation, non local problem, integral condition.
@article{SVFU_2016_23_a7,
     author = {K. U. Khubiev},
     title = {A problem with an integral condition in the hyperbolic part for a characteristically loaded hyperbolic-parabolic equation},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {91--98},
     publisher = {mathdoc},
     volume = {23},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a7/}
}
TY  - JOUR
AU  - K. U. Khubiev
TI  - A problem with an integral condition in the hyperbolic part for a characteristically loaded hyperbolic-parabolic equation
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 91
EP  - 98
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_a7/
LA  - ru
ID  - SVFU_2016_23_a7
ER  - 
%0 Journal Article
%A K. U. Khubiev
%T A problem with an integral condition in the hyperbolic part for a characteristically loaded hyperbolic-parabolic equation
%J Matematičeskie zametki SVFU
%D 2016
%P 91-98
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_a7/
%G ru
%F SVFU_2016_23_a7
K. U. Khubiev. A problem with an integral condition in the hyperbolic part for a characteristically loaded hyperbolic-parabolic equation. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 91-98. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a7/

[1] Kozhanov A. I., Pulkina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differ. Equ., 42:9 (2006), 1233–1246 | DOI | MR | Zbl

[2] Russian Math. (Iz. VUZ), 56:10 (2012), 26–37 | DOI | MR | Zbl

[3] Kozhanov A. I., “Solvability of Boundary Value Problems for Linear Parabolic Equations with an Integral Condition in a Time Variable”, Yak. Math. Journal, 21:4 (2014), 17–25 | Zbl

[4] Mamchuev M. O., “Necessary non-local conditions for a diffusion-wave equation”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2014, no. 7, 45–59 | Zbl

[5] Moiseev E. I., Korzyuk V. I., and Kozlovskaya I. S., “Classical solution of a problem with an integral condition for the one-dimensional wave equation”, Differ. Equ., 50:10 (2014), 1364–1377 | DOI | DOI | MR | Zbl

[6] Nakhushev A. M., “Approximate method of solving boundary-value problems for differential equations and its application to the dynamics of ground moisture and ground water”, Differ. Equ., 18 (1982), 60–67 | MR | Zbl

[7] Nakhushev A. M., Loaded Equations and their Applications, Nauka, Moscow, 2012

[8] Kozhanov A. I., ““Solvability of some spatially nonlocal boundary value problems for secondorder linear hyperbolic equations”, Dokl. Math., 80:1 (2009), 599–601 | DOI | MR | Zbl

[9] Pul’kina L. S., “A nonlocal problem with conditions of integral form for the first-order hyperbolic equation and its connection with the loaded differential equation”, Dokl. Adygsk. (Cherkess.) Mezhdunar. Akad. Nauk, 15:2 (2013), 68–72

[10] Khubiev K. U., “On some nonlocal boundary value problem for the hyperbolic-parabolic equations”, Differential Equations and Related Problems, Proc. Int. Conf. (June 24-27, 2008), v. 2, Sterlitamak, 2008, 180–184

[11] Nakhushev A. M., Fractional Calculus and its Applications, Fizmatlit, Moscow, 2003

[12] Tikhonov A. N. and Samarskii A. A., Equations of Mathematical Physics, Nauka, Moscow, 1977 | MR

[13] Nakhushev A. M, Equations of Mathematical Biology, Vysshaya Shkola, Moscow, 1995