The stationary Galerkin method for a boundary value problem for a mixed second-order equation
Matematičeskie zametki SVFU, Tome 23 (2016), pp. 82-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of the unique regular solution for the boundary value problem for the mixed type second-order equation in the Sobolev space. The stationary Galerkin method is applied, for which the error estimate is obtained using eigenvalues of the spectral problem for the Laplace equation in the variables $x\in R^n$ and $t$.
Keywords: mixed type equation, boundary value problem, a priori estimate, stationary Galerkin method, error.
@article{SVFU_2016_23_a6,
     author = {V. E. Fedorov and I. M. Tikhonova},
     title = {The stationary {Galerkin} method for a boundary value problem for a mixed second-order equation},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {82--90},
     publisher = {mathdoc},
     volume = {23},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a6/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - I. M. Tikhonova
TI  - The stationary Galerkin method for a boundary value problem for a mixed second-order equation
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 82
EP  - 90
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_a6/
LA  - ru
ID  - SVFU_2016_23_a6
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A I. M. Tikhonova
%T The stationary Galerkin method for a boundary value problem for a mixed second-order equation
%J Matematičeskie zametki SVFU
%D 2016
%P 82-90
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_a6/
%G ru
%F SVFU_2016_23_a6
V. E. Fedorov; I. M. Tikhonova. The stationary Galerkin method for a boundary value problem for a mixed second-order equation. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 82-90. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a6/

[1] Gellerstedt S., Sur un problème aux limites pour une équation linéaire aux dérivées partielles du second ordre de tipe mixte, Thèse pour le doctorat, Uppsala, 1935, 92 pp.

[2] Tricomi F. C., Linear Equations of Mixed Type, Gostekhizdat, Moscow, 1947

[3] Tricomi F. C., Lectures on Partial Differential Equations, Izdat. Inostr. Lit., Moscow, 1957

[4] Bitsadze A. V., Equations of Mixed Type, Akad. Nauk SSSR, Moscow, 1959 | MR

[5] Guderley K. G., The Theory of Transonic Flows, Izd. Inost. Lit., Moscow, 1960

[6] Smirnov M. M., Equations of Mixed Type, Nauka, Moscow, 1970 | MR

[7] Salakhitdinov M. S., Equations of Mixed-Composite Type, FAN, Tashkent, 1974 | MR

[8] Karatoprakliev G. D., “A class of mixed-type equations in multidimensional domains”, Dokl. AN SSSR, 230:4 (1976), 769–772 | MR | Zbl

[9] Lar’kin N. A., “One class of nonlinear equations of mixed type”, Sib. Math. J., 19:6 (1978), 919–924 | MR

[10] Vragov V. N, “On the theory of boundary-value problems for mixed-type equations in space”, Differ. Uravn., 13:6 (1977), 1098–1105 | MR | Zbl

[11] Vragov V. N, ““On the formulation and the solvability of boundary value problems for mixedcomposite type equations”, Matematicheskiy Aanaliz i Smejnie Voprosi Matematiki, Nauka, Novosibirsk, 1978, 5–13 | MR

[12] Terekhov A. N., “A boundary value problem for a mixed type equation”, Primenenie Metodov Funkstional’nogo Analiza k Zadacham Matematicheskoi Fiziki i Vyshislitel’noi Matematiki, IM SO AN SSSR, Novosibirsk, 1979, 128–136

[13] Djuraev T. D., Boundary Value Problems for Equations of Mixed and Mixed-Composite Types, FAN, Tashkent, 1979 | MR

[14] Vragov V. N., Boundary Value Problems for Nonclassical Equations of Mathematical Physics, Novosibirsk Univ., Novosibirsk, 1983 | MR

[15] Moiseev E. I., Mixed Type Equations with a Spectral Parameter, MGU, Moscow, 1988 | MR

[16] Kuzmin A. G., Non-classical Mixed Type Equations and Their Application in Gas Dynamics, LGU, Leningrad, 1990 | MR

[17] Egorov I. E. and Fedorov V. E., High-Order Nonclassical Equations of Mathematical Physics, Vychisl. Tsentr SO RAN, Novosibirsk, 1995 | MR

[18] Egorov I. E. and Fedorov V. E., Introduction to the Theory of Mixed Type Equations of Second Order, Yakutsk Univ., Yakutsk, 1998

[19] Egorov I. E. and Fedorov V. E., “About a boundary value problem for mixed type equation of high order”, Mat. Zamet. YAGU, 6:1 (1999), 26–35 | Zbl

[20] Chueshev A. V., The solvability of boundary value problems for mixed type equations of high order, Diss. ... kand. fiz.-mat. nauk, Novosib. Gos. Univ., Novosibirsk, 2001

[21] Ladyzhenskaya O. A., Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1985 | MR

[22] Egorov I. E. and Tikhonova I. M., ““Stationary Galerkin method for a mixed-type second-order equation”, Mat. Zamet. YAGU, 17:2 (2010), 41–47 | Zbl

[23] Egorov I. E. and Tikhonova I. M., “Application of the stationary Galerkin method to an equation of mixed type”, Mat. Zamet. YAGU, 19:2 (2012), 20–28 | Zbl

[24] Egorov I. E. and Tikhonova I. M, “About convergence speed of the stationary Galerkin method for a mixed type equation”, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program., 2012, no. 14, 53–58 | Zbl

[25] Tikhonova I. M., “Error estimates for the stationary Galerkin method for the Terekhov problem”, Sbornik statei nauchn. konf. "XVII i XVIII Lavrentievskie Chteniya, Izdat. MCNIP, Kirov, 2015, 69–72

[26] Egorov I. E. and Tikhonova I. M, “Application of a Modified Galerkin Method to Mixed Type Equations”, Yak. Math. Journal, 21:4 (2014), 11-16 | MR | Zbl

[27] Egorov I. E., “Application of the Modified Galerkin Method to the First Boundary Value Problems for a Mixed Type Equation”, Yak. Math. Journal, 22:3 (2015), 1–7 | Zbl

[28] Dzhishkariani A. V., “On the rate of convergence of the Bubnov–Galerkin method”, USSR Comput. Math. Math. Phys., 4:2 (1964), 183–189 | DOI | MR

[29] Vinogradova P. V. and Zarubin A. G., “Error estimates for the Galerkin method as applied to time-dependent equations”, Comput. Math. Math. Phys., 49:9 (2009), 1567–1575 | DOI | MR | Zbl

[30] Vinogradova P. V., Koroleva T. E., “O ravnomernoi otsenke skorosti skhodimosti metoda Galërkina dlya nelineinogo uravneniya tretego poryadka”, Mat. zametki SVFU, 21:2 (2014), 3–7 | Zbl

[31] Tikhonova I. M. and Fedorov V. E., “On one boundary value problem for a mixed second-order equation”, Mat. Zamet. YAGU, 17:2 (2010), 109–117 | Zbl