Application of the stationary Galerkin method to the first boundary value problem for a mixed high-order equation
Matematičeskie zametki SVFU, Tome 23 (2016), pp. 73-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first boundary value problem for a mixed even-order equation and construct an approximate solution using the stationary Galerkin method. The existence of a regular solution for the boundary value problem is proved under certain conditions on coefficients of the equation. We obtain the error estimate of the Galerkin method.
Keywords: Galerkin method, mixed type equation, regular solution, a priori estimate.
@article{SVFU_2016_23_a5,
     author = {I. M. Tikhonova},
     title = {Application of the stationary {Galerkin} method to the first boundary value problem for a mixed high-order equation},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {73--81},
     publisher = {mathdoc},
     volume = {23},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a5/}
}
TY  - JOUR
AU  - I. M. Tikhonova
TI  - Application of the stationary Galerkin method to the first boundary value problem for a mixed high-order equation
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 73
EP  - 81
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_a5/
LA  - ru
ID  - SVFU_2016_23_a5
ER  - 
%0 Journal Article
%A I. M. Tikhonova
%T Application of the stationary Galerkin method to the first boundary value problem for a mixed high-order equation
%J Matematičeskie zametki SVFU
%D 2016
%P 73-81
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_a5/
%G ru
%F SVFU_2016_23_a5
I. M. Tikhonova. Application of the stationary Galerkin method to the first boundary value problem for a mixed high-order equation. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 73-81. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a5/

[1] Tricomi F. C., Linear Equations of Mixed Type, Gostekhizdat, Moscow, 1947

[2] Tricomi F. C., Lectures on Partial Differential Equations, Izdat. Inostr. Lit., Moscow, 1957

[3] Bitsadze A. V., Equations of Mixed Type, Akad. Nauk SSSR, Moscow, 1959 | MR

[4] Guderley K. G., The Theory of Transonic Flows, Izd. Inost. Lit., Moscow, 1960

[5] Vragov V. N., Boundary Value Problems for Nonclassical Equations of Mathematical Physics, Novosibirsk Univ., Novosibirsk, 1983 | MR

[6] Egorov I. E. and Fedorov V. E., Introduction to the Theory of Mixed Type Equations of Second Order, Yakutsk Univ., Yakutsk, 1998

[7] Egorov I. E. and Fedorov V. E., High-Order Nonclassical Equations of Mathematical Physics, Vychisl. Tsentr SO RAN, Novosibirsk, 1995 | MR

[8] Smirnov M. M.,, Equations of Mixed Type, Nauka, Moscow, 1970 | MR

[9] Salakhitdinov M. S., Equations of Mixed-Composite Type, FAN, Tashkent, 1974 | MR

[10] Terekhov A. N., “A boundary value problem for a mixed type equation”, Primenenie Metodov Funkstional’nogo Analiza k Zadacham Matematicheskoi Fiziki i Vyshislitel’noi Matematiki, IM SO AN SSSR, Novosibirsk, 1979, 128–136

[11] Moiseev E. I., Mixed Type Equations with a Spectral Parameter, MGU, Moscow, 1988 | MR

[12] Ladyzhenskaya O. A., Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1985 | MR

[13] Dzhishkariani A. V., “On the rate of convergence of the Bubnov–Galerkin method”, USSR Comput. Math. Math. Phys., 4:2 (1964), 183–189 | DOI | MR

[14] Vinogradova P. V. and Zarubin A. G., “Error estimates for the Galerkin method as applied to time-dependent equations”, Comput. Math. Math. Phys., 49:9 (2009), 1567–1575 | DOI | MR | Zbl

[15] Egorov I. E. and Tikhonova I. M., ““Stationary Galerkin method for a mixed-type second-order equation”, Mat. Zamet. YAGU, 17:2 (2010), 41–47 | Zbl

[16] Besov O. V. and Ilyin V. P., Integral Representations of Functions and Embedding Theorems, Nauka, Moscow, 1975 | MR