Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVFU_2016_23_a4, author = {E. A. Romanova and V. E. Fedorov}, title = {Resolving operators of a linear degenerate evolution equation with {Caputo} derivative. {The} sectorial case}, journal = {Matemati\v{c}eskie zametki SVFU}, pages = {58--72}, publisher = {mathdoc}, volume = {23}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a4/} }
TY - JOUR AU - E. A. Romanova AU - V. E. Fedorov TI - Resolving operators of a linear degenerate evolution equation with Caputo derivative. The sectorial case JO - Matematičeskie zametki SVFU PY - 2016 SP - 58 EP - 72 VL - 23 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVFU_2016_23_a4/ LA - ru ID - SVFU_2016_23_a4 ER -
%0 Journal Article %A E. A. Romanova %A V. E. Fedorov %T Resolving operators of a linear degenerate evolution equation with Caputo derivative. The sectorial case %J Matematičeskie zametki SVFU %D 2016 %P 58-72 %V 23 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVFU_2016_23_a4/ %G ru %F SVFU_2016_23_a4
E. A. Romanova; V. E. Fedorov. Resolving operators of a linear degenerate evolution equation with Caputo derivative. The sectorial case. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 58-72. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a4/
[1] Bajlekova E. G., Fractional evolution equations in Banach spaces, PhD thesis, Univ. Press Facilities, Eindhoven Univ. Technology, 2001 | MR | Zbl
[2] Fedorov V. E., Romanova E. A., and Debbouche A., “Analytic in a sector resolving operators families of degenerate evolution equations of fractional order”, Sib. J. Pure Appl. Math., 16:2 (2016), 93–107
[3] Fedorov V. E. and Gordievskikh D. M., “Resolving operators of degenerate evolution equations with fractional derivative with respect to time”, Russ. Math., 59:1 (2015), 60–70 | DOI | MR | Zbl
[4] Fedorov V. E., Gordievskikh D. M., and Plekhanova M. V., “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differ. Equ., 51:10 (2015), 1360–1368 | DOI | MR | Zbl
[5] Gordievskikh D. M. and Fedorov V. E., “Solutions of initial boundary value problems for some degenerate equations of systems of time-fractional order”, Izv. Irkutsk State Univ., Ser. Mat., 12 (2015), 12–22 | Zbl
[6] | Zbl
[7] Plekhanova M. V., “Quasilinear equations that are not solved for the higher-order time derivative”, Sib. Math. J., 56:4 (2015), 725–735 | DOI | MR | Zbl
[8] Plekhanova M. V., “Optimal control for quasilinear degenerate systems of higher order”, J. Math. Sci., 219:2 (2016), 236–244 | DOI | MR | Zbl
[9] Plekhanova M. V., “Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative”, Discrete Continuous Dyn. Syst. Ser. S, 9:3 (2016), 833–847 | DOI | MR
[10] Plekhanova M. V., “Distributed control problems for a class of degenerate semilinear evolution equations”, J. Comput. Appl. Math., 312. (2017), 39–46 | DOI | MR | Zbl
[11] Fedorov V. E., ““Strongly holomorphic groups of linear equations of Sobolev type in locally convex spaces”, Differ. Equ., 40:5 (2004), 753–768 | DOI | MR | Zbl
[12] Kostić M. and Fedorov V. E., “Degenerate fractional differential equations in locally convex spaces with a $\sigma$-regular pair of operators”, Ufa Math. Journal, 8:4 (2016), 98–110 | DOI | MR
[13] Kostić M., “Abstract time-fractional equations: existence and growth of solutions”, Fract. Calc. Appl. Anal., 14:2 (2014), 301–316 | MR
[14] Kostić M., Li C.-G., Li M., “Abstract multi-term fractional differential equations”, Kragujevac J. Math, 38:1 (2014), 51–71 | DOI | MR | Zbl
[15] Li F., Liang J., Xu H. K., “Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions”, J. Math. Anal. Appl., 391:2 (2012), 510–525 | DOI | MR | Zbl
[16] Wang J., Fečkan M., Zhou Y., “Controllability of Sobolev type fractional evolution systems”, Dyn. Partial Differ. Equ, 11 (2014), 71–87 | DOI | MR | Zbl
[17] Debbouche A., Nieto J. J., “Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls”, Appl. Math. Comput., 245:C (2014), 74–85 | MR | Zbl
[18] Debbouche A., Torres Delfim F. M., “Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions”, Fract. Calc. Appl. Anal., 18:1 (2015), 95–121 | DOI | MR | Zbl
[19] Caputo M., “Linear Model of Dissipation Whose Q is Almost Frequancy Independent. II”, Geophys. J. R. Astronom. Soc., 13 (1967), 529–539 | DOI
[20] Gerasimov A. N., “Generalization of linear deformation laws and their applications to problems of internal friction”, Prikl. Mat. Mekh, 12:3 (1948), 251–259
[21] Prüss J., Evolutionary integral equations and applications, Springer-Verl., Basel, 1993 | MR
[22] Plotnikov P. I. and Klepacheva A. V., “The phase field equations and gradient flows of marginal functions”, Sib. Math. J., 42:3 (2001), 551–567 | DOI | MR | Zbl
[23] Plotnikov P. I. and Starovoytov V. N., “Stefan problem with the surface tension as the limit of the phase field model”, Differ. Equ., 29:3 (1993), 394–404 | MR | Zbl