Resolving operators of a linear degenerate evolution equation with Caputo derivative. The sectorial case
Matematičeskie zametki SVFU, Tome 23 (2016), pp. 58-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Unique solvability of the Cauchy problem for an equation in a Banach space with degenerate operator at the fractional Caputo derivative is studied. Previously found conditions of the existence of analytic in a sector resolving operators family for the equation with the degeneration on the kernel of the operator at the derivative is used. The form of the resolving operators is established. Under the satisfied conditions, the existence is shown for the unique solution of the Cauchy problem to the researched equation with initial data from the complement of the kernel of the operator at the derivative and the solution is presented using the resolving operators. The obtained results are applied to studying the linearized quasistationary time-fractional order system of the phase field equations.
Keywords: degenerate evolution equation, fractional Caputo derivative, analytic in a sector resolving operators family, Cauchy problem, initial boundary value problem, system of partial differential equations.
@article{SVFU_2016_23_a4,
     author = {E. A. Romanova and V. E. Fedorov},
     title = {Resolving operators of a linear degenerate evolution equation with {Caputo} derivative. {The} sectorial case},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {58--72},
     publisher = {mathdoc},
     volume = {23},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a4/}
}
TY  - JOUR
AU  - E. A. Romanova
AU  - V. E. Fedorov
TI  - Resolving operators of a linear degenerate evolution equation with Caputo derivative. The sectorial case
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 58
EP  - 72
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_a4/
LA  - ru
ID  - SVFU_2016_23_a4
ER  - 
%0 Journal Article
%A E. A. Romanova
%A V. E. Fedorov
%T Resolving operators of a linear degenerate evolution equation with Caputo derivative. The sectorial case
%J Matematičeskie zametki SVFU
%D 2016
%P 58-72
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_a4/
%G ru
%F SVFU_2016_23_a4
E. A. Romanova; V. E. Fedorov. Resolving operators of a linear degenerate evolution equation with Caputo derivative. The sectorial case. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 58-72. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a4/

[1] Bajlekova E. G., Fractional evolution equations in Banach spaces, PhD thesis, Univ. Press Facilities, Eindhoven Univ. Technology, 2001 | MR | Zbl

[2] Fedorov V. E., Romanova E. A., and Debbouche A., “Analytic in a sector resolving operators families of degenerate evolution equations of fractional order”, Sib. J. Pure Appl. Math., 16:2 (2016), 93–107

[3] Fedorov V. E. and Gordievskikh D. M., “Resolving operators of degenerate evolution equations with fractional derivative with respect to time”, Russ. Math., 59:1 (2015), 60–70 | DOI | MR | Zbl

[4] Fedorov V. E., Gordievskikh D. M., and Plekhanova M. V., “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differ. Equ., 51:10 (2015), 1360–1368 | DOI | MR | Zbl

[5] Gordievskikh D. M. and Fedorov V. E., “Solutions of initial boundary value problems for some degenerate equations of systems of time-fractional order”, Izv. Irkutsk State Univ., Ser. Mat., 12 (2015), 12–22 | Zbl

[6] | Zbl

[7] Plekhanova M. V., “Quasilinear equations that are not solved for the higher-order time derivative”, Sib. Math. J., 56:4 (2015), 725–735 | DOI | MR | Zbl

[8] Plekhanova M. V., “Optimal control for quasilinear degenerate systems of higher order”, J. Math. Sci., 219:2 (2016), 236–244 | DOI | MR | Zbl

[9] Plekhanova M. V., “Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative”, Discrete Continuous Dyn. Syst. Ser. S, 9:3 (2016), 833–847 | DOI | MR

[10] Plekhanova M. V., “Distributed control problems for a class of degenerate semilinear evolution equations”, J. Comput. Appl. Math., 312. (2017), 39–46 | DOI | MR | Zbl

[11] Fedorov V. E., ““Strongly holomorphic groups of linear equations of Sobolev type in locally convex spaces”, Differ. Equ., 40:5 (2004), 753–768 | DOI | MR | Zbl

[12] Kostić M. and Fedorov V. E., “Degenerate fractional differential equations in locally convex spaces with a $\sigma$-regular pair of operators”, Ufa Math. Journal, 8:4 (2016), 98–110 | DOI | MR

[13] Kostić M., “Abstract time-fractional equations: existence and growth of solutions”, Fract. Calc. Appl. Anal., 14:2 (2014), 301–316 | MR

[14] Kostić M., Li C.-G., Li M., “Abstract multi-term fractional differential equations”, Kragujevac J. Math, 38:1 (2014), 51–71 | DOI | MR | Zbl

[15] Li F., Liang J., Xu H. K., “Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions”, J. Math. Anal. Appl., 391:2 (2012), 510–525 | DOI | MR | Zbl

[16] Wang J., Fečkan M., Zhou Y., “Controllability of Sobolev type fractional evolution systems”, Dyn. Partial Differ. Equ, 11 (2014), 71–87 | DOI | MR | Zbl

[17] Debbouche A., Nieto J. J., “Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls”, Appl. Math. Comput., 245:C (2014), 74–85 | MR | Zbl

[18] Debbouche A., Torres Delfim F. M., “Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions”, Fract. Calc. Appl. Anal., 18:1 (2015), 95–121 | DOI | MR | Zbl

[19] Caputo M., “Linear Model of Dissipation Whose Q is Almost Frequancy Independent. II”, Geophys. J. R. Astronom. Soc., 13 (1967), 529–539 | DOI

[20] Gerasimov A. N., “Generalization of linear deformation laws and their applications to problems of internal friction”, Prikl. Mat. Mekh, 12:3 (1948), 251–259

[21] Prüss J., Evolutionary integral equations and applications, Springer-Verl., Basel, 1993 | MR

[22] Plotnikov P. I. and Klepacheva A. V., “The phase field equations and gradient flows of marginal functions”, Sib. Math. J., 42:3 (2001), 551–567 | DOI | MR | Zbl

[23] Plotnikov P. I. and Starovoytov V. N., “Stefan problem with the surface tension as the limit of the phase field model”, Differ. Equ., 29:3 (1993), 394–404 | MR | Zbl