Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account
Matematičeskie zametki SVFU, Tome 23 (2016), pp. 46-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine the question of well-posedness in the Sobolev spaces of an inverse problem of determining a source function in a system comprising a parabolic equation and an ordinary differential equation. The overdetermination conditions are the values of concentration of an admixture at separate points. We prove existence and uniqueness of solutions to the problem.
Mots-clés : parabolic equation
Keywords: inverse problem, heat-and-mass transfer, boundary value problem, source function.
@article{SVFU_2016_23_a3,
     author = {S. G. Pyatkov and V. V. Rotko},
     title = {Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {46--57},
     publisher = {mathdoc},
     volume = {23},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a3/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - V. V. Rotko
TI  - Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 46
EP  - 57
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_a3/
LA  - ru
ID  - SVFU_2016_23_a3
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A V. V. Rotko
%T Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account
%J Matematičeskie zametki SVFU
%D 2016
%P 46-57
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_a3/
%G ru
%F SVFU_2016_23_a3
S. G. Pyatkov; V. V. Rotko. Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 46-57. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a3/

[1] K. E. Bencala , R. A. Walters, “Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model”, Water Resour. Res., 19:3 (1983), 718–724 | DOI

[2] W. Czernuszenko, P. M. Rowinski, “Properties of the dead-zone model of longitudinal dispersion in rivers”, J. Hydraul. Res., 35:4 (1997), 491–504 | DOI

[3] B. H. Schmid, “Persistence of skewness in longitudinal dispersion data: Can the dead zone model explain after all”, J. Hydraul. Eng., 128:9 (2002), 848–854 | DOI

[4] K. Jonsson, H. Johansson, A. Wörman, “Hyporheic exchange of reactive and conservative solutes in streams-tracer methodology and model interpretation”, J. Hydrol., 278:1–4 (2003), 153–171 | DOI

[5] A. H. Elliott, N. H. Brooks, “Transfer of nonsorbing solutes to a streambed with bed forms: Theory”, Water Resour. Res., 33:1. (1997), 123–136 | DOI

[6] A. Wörman, “Comparison of models for transient storage of solutes in small streams”, Water Resour. Res., 36:2 (2000), 455–468 | DOI

[7] A. Wörman, A. I. Packman, H. Johansson, K. Johansson, “Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers”, Water Resour. Res., 38:1 (2002), 2–1–2–15 | DOI

[8] A. M. Michalak, P. K. Kitanidis, “Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling”, Water Resour. Res., 40 (2004), W08302 | DOI

[9] F. Boano, R. Revelli, L. Ridolfi, “Source identification in river pollution problems: A geostatistical approach”, Water Resour. Res., 41 (2005), W07023 | DOI

[10] M. Ivanchov, Inverse problems for equation of parabolic type, Math. Stud. Monogr. Ser., 10, VNTL Publishers, Lviv, 2003, 238 pp. | MR

[11] Pyatkov S. G. and Samkov M. L., “On some classes of coefficient inverse problems for parabolic systems of equations”, Sib. Adv. Math., 22:4 (2012), 287–302 | DOI | MR | Zbl

[12] A. I. Kozhanov, Composite type equations and inverse problems, VSP, Utrecht, 1999 | MR | Zbl

[13] V. Isakov, Inverse problems for partial differential equations, Appl. Math. Sci., 127, Springer Science Business Media, Berlin, 2006 | MR | Zbl

[14] Prilepko A. I., Orlovsky D. G., and Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York, 1999 | MR

[15] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, Elsevier Sci. Publ., Amsterdam; New York; Oxford, 1978 | MR

[16] Ladyzhenskaya O. A., Solonnikov V. A., and Ural’tseva N. N., Linear and Quasi-linear Equations of Parabolic Type, v. 23, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1967 | MR

[17] E. M. Korotkova, S. G. Pyatkov, “On some inverse problems for a linearized system of heat and mass transfer”, Sib. Adv. Math., 25:2 (2015), 110–123 | DOI | MR