Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVFU_2016_23_a3, author = {S. G. Pyatkov and V. V. Rotko}, title = {Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account}, journal = {Matemati\v{c}eskie zametki SVFU}, pages = {46--57}, publisher = {mathdoc}, volume = {23}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a3/} }
TY - JOUR AU - S. G. Pyatkov AU - V. V. Rotko TI - Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account JO - Matematičeskie zametki SVFU PY - 2016 SP - 46 EP - 57 VL - 23 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVFU_2016_23_a3/ LA - ru ID - SVFU_2016_23_a3 ER -
%0 Journal Article %A S. G. Pyatkov %A V. V. Rotko %T Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account %J Matematičeskie zametki SVFU %D 2016 %P 46-57 %V 23 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVFU_2016_23_a3/ %G ru %F SVFU_2016_23_a3
S. G. Pyatkov; V. V. Rotko. Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 46-57. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a3/
[1] K. E. Bencala , R. A. Walters, “Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model”, Water Resour. Res., 19:3 (1983), 718–724 | DOI
[2] W. Czernuszenko, P. M. Rowinski, “Properties of the dead-zone model of longitudinal dispersion in rivers”, J. Hydraul. Res., 35:4 (1997), 491–504 | DOI
[3] B. H. Schmid, “Persistence of skewness in longitudinal dispersion data: Can the dead zone model explain after all”, J. Hydraul. Eng., 128:9 (2002), 848–854 | DOI
[4] K. Jonsson, H. Johansson, A. Wörman, “Hyporheic exchange of reactive and conservative solutes in streams-tracer methodology and model interpretation”, J. Hydrol., 278:1–4 (2003), 153–171 | DOI
[5] A. H. Elliott, N. H. Brooks, “Transfer of nonsorbing solutes to a streambed with bed forms: Theory”, Water Resour. Res., 33:1. (1997), 123–136 | DOI
[6] A. Wörman, “Comparison of models for transient storage of solutes in small streams”, Water Resour. Res., 36:2 (2000), 455–468 | DOI
[7] A. Wörman, A. I. Packman, H. Johansson, K. Johansson, “Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers”, Water Resour. Res., 38:1 (2002), 2–1–2–15 | DOI
[8] A. M. Michalak, P. K. Kitanidis, “Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling”, Water Resour. Res., 40 (2004), W08302 | DOI
[9] F. Boano, R. Revelli, L. Ridolfi, “Source identification in river pollution problems: A geostatistical approach”, Water Resour. Res., 41 (2005), W07023 | DOI
[10] M. Ivanchov, Inverse problems for equation of parabolic type, Math. Stud. Monogr. Ser., 10, VNTL Publishers, Lviv, 2003, 238 pp. | MR
[11] Pyatkov S. G. and Samkov M. L., “On some classes of coefficient inverse problems for parabolic systems of equations”, Sib. Adv. Math., 22:4 (2012), 287–302 | DOI | MR | Zbl
[12] A. I. Kozhanov, Composite type equations and inverse problems, VSP, Utrecht, 1999 | MR | Zbl
[13] V. Isakov, Inverse problems for partial differential equations, Appl. Math. Sci., 127, Springer Science Business Media, Berlin, 2006 | MR | Zbl
[14] Prilepko A. I., Orlovsky D. G., and Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York, 1999 | MR
[15] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, Elsevier Sci. Publ., Amsterdam; New York; Oxford, 1978 | MR
[16] Ladyzhenskaya O. A., Solonnikov V. A., and Ural’tseva N. N., Linear and Quasi-linear Equations of Parabolic Type, v. 23, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1967 | MR
[17] E. M. Korotkova, S. G. Pyatkov, “On some inverse problems for a linearized system of heat and mass transfer”, Sib. Adv. Math., 25:2 (2015), 110–123 | DOI | MR