Inverse problems of recovering the right-hand side of a special type of parabolic equations
Matematičeskie zametki SVFU, Tome 23 (2016), pp. 31-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of new inverse problems of finding a solution of some parabolic equation along with the unknown external source (the right-hand side) of a special type. The existence and uniqueness theorems for regular solutions are proved. The considered problems can be treated as generalizations known in the theory of parabolic equations inverse problems with final and integral overdetermination.
Mots-clés : parabolic equation, existence
Keywords: linear inverse problem, final or integral overdetermination, unknown coefficient of a special type, uniqueness.
@article{SVFU_2016_23_a2,
     author = {A. I. Kozhanov},
     title = {Inverse problems of recovering the right-hand side of a special type of parabolic equations},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {31--45},
     publisher = {mathdoc},
     volume = {23},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a2/}
}
TY  - JOUR
AU  - A. I. Kozhanov
TI  - Inverse problems of recovering the right-hand side of a special type of parabolic equations
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 31
EP  - 45
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_a2/
LA  - ru
ID  - SVFU_2016_23_a2
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%T Inverse problems of recovering the right-hand side of a special type of parabolic equations
%J Matematičeskie zametki SVFU
%D 2016
%P 31-45
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_a2/
%G ru
%F SVFU_2016_23_a2
A. I. Kozhanov. Inverse problems of recovering the right-hand side of a special type of parabolic equations. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 31-45. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a2/

[1] Prilepko A. I., Orlovsky D. G., and Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York, 2000 | MR | Zbl

[2] Isakov V., Inverse problems for partial differential equations, Springer-Verl., Berlin, 2009 | MR

[3] Kozhanov A. I., “Nonlinear loaded equations and inverse problems”, Comput. Math. Math. Phys., 44:4 (2004), 657–678 | MR | Zbl

[4] Kozhanov A. I., “A nonlinear loaded parabolic equation and a related inverse problem”, Math. Notes, 76:6 (2004), 784–795 | DOI | MR | Zbl

[5] Kozhanov A. I., Safiullova R. R., “Linear inverse problems for parabolic and hyperbolic equations”, J. Inverse Ill-Posed Probl., 18:1, 1–18 | DOI | MR

[6] Oleynik O. A. and Radkevich E. V., Equations with Nonnegative Characteristic Form, MGU, Moscow, 2010

[7] Kozhanov A. I., “Boundary value problem with the integrodifferential boundary value condition for linear parabolic equations”, Mat. Zamet. YAGU, 16:2 (2009), 42–50 | Zbl

[8] Nakhushev A. M., Loaded Equations and their Applications, Nauka, Moscow, 2012

[9] Dzhenaliev N. T., On the Theory of Linear Boundary Value Problems for Loaded Differential Equations, Inst. Teor. Prikl. Mat., Almaty, 1995

[10] Ladyzhenskaya O. A. and Ural’tseva N. N., Linear and Quasilinear Equations of Elliptic Type, Nauka, Moscow, 1973 | MR

[11] Trenogin V. A., Functional Analysis, Nauka, Moscow, 1980 | MR