On Fredholm solvability of Vragov boundary value problem for a mixed even-order equation
Matematičeskie zametki SVFU, Tome 23 (2016), pp. 19-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary value problem of V. N. Vragov for mixed type equations of even order with elliptic operator in space variables. We prove the generalized solvability, dense solvability, uniqueness of generalized solutions and Fredholm solvability of the boundary value problem in the corresponding Sobolev spaces.
Keywords: mixed type equation, Fredholm solvability, boundary value problem, generalized solution, inequality, evaluation, operator equation.
@article{SVFU_2016_23_a1,
     author = {I. E. Egorov},
     title = {On {Fredholm} solvability of {Vragov} boundary value problem for a mixed even-order equation},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {19--30},
     publisher = {mathdoc},
     volume = {23},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_a1/}
}
TY  - JOUR
AU  - I. E. Egorov
TI  - On Fredholm solvability of Vragov boundary value problem for a mixed even-order equation
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 19
EP  - 30
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_a1/
LA  - ru
ID  - SVFU_2016_23_a1
ER  - 
%0 Journal Article
%A I. E. Egorov
%T On Fredholm solvability of Vragov boundary value problem for a mixed even-order equation
%J Matematičeskie zametki SVFU
%D 2016
%P 19-30
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_a1/
%G ru
%F SVFU_2016_23_a1
I. E. Egorov. On Fredholm solvability of Vragov boundary value problem for a mixed even-order equation. Matematičeskie zametki SVFU, Tome 23 (2016), pp. 19-30. http://geodesic.mathdoc.fr/item/SVFU_2016_23_a1/

[1] Bitsadze A. V, Equations of Mixed Type, Akad. Nauk SSSR, Moscow, 1959 | MR

[2] Berezanskij J. M., Expansions in Eigenfunctions of Selfadjoint Operators, Nauk. dumka, Kiev, 1965 | MR

[3] Mikhailov V. P., “The generalized Tricomi problem”, Boundary value problems for differential equations. Part II, Trudy Mat. Inst. Steklov., 103, 1968, 142–161 | MR | Zbl

[4] Karatoprakliev G. D., “On some boundary value problems for mixed type equations in multidimensional domains”, Dokl. Bolgar. AN, 23:10 (1970), 1183–1186 | Zbl

[5] Didenko V. P., “On the generalized solvability of the Tricomi problem”, Ukr. Mat. Zh., 25:1 (1973), 14–19

[6] Vragov V. N., “On the theory of boundary-value problems for mixed-type equations in space”, Differ. Uravn., 13:6 (1977), 1098–1105 | MR | Zbl

[7] Vragov V. N., “On the formulation and solvability of boundary value problems for mixedcomposite type equations”, Matematicheskiy analiz i smezhnie voprosi matematiki, Nauka, Novosibirsk, 1978, 5–13 | MR

[8] Moiseev E. I., Mixed Type Equations with a Spectral Parameter, MGU, Moscow, 1988 | MR

[9] Kuzmin A. G., Non-classical Mixed Type Equations and Their Application in Gas Dynamics, LGU, Leningrad, 1990 | MR

[10] Egorov I. E. and Fedorov V. E., High-Order Non-classical Equations of Mathematical Physics, Vychisl. Tsentr SO RAN, Novosibirsk, 1995 | MR

[11] Egorov I. E., Pyatkov S. G., and Popov S. V., Nonclassical Differential-Operator Equations, Nauka, Novosibirsk, 2000 | MR

[12] Nakhushev A. M., Problems with Shift for Partial Differential Equations, Nauka, Moscow, 2006

[13] Salakhitdinov M. S. and Urinov A. K., Spectral Theory for Mixed Type Equations, Mumtoz SO’Z, Tashkent, 2010

[14] Egorov I. E., “Fredholm solvability of a boundary value problem for a mixed type equation”, Mat. Zamet. YAGU, 18:1 (2011), 55–64 | Zbl

[15] Egorov I. E., “On the Fredholm property of a boundary value problem for a mixed type equation”, Mat. Zamet. YAGU, 20:1 (2013), 20–26

[16] Egorov I. E., “On the Fredholm solvability of the first boundary value problem for mixed type equations of even order”, Mat. Zamet. YAGU, 20:2 (2013), 48–56 | Zbl

[17] Egorov I. E., ““A boundary value problem for a mixed type equation with a spectral parameter”, Mat. Zamet. SVFU, 21:1 (2014), 11–17 | MR | Zbl

[18] Krein S. G., Linear Differential Equations in Banach Space, Nauka, Moscow, 1971 | MR